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ABSTRACT

In this report a class of linear quadratic pursuit-evasion games with

bounds on the pursuer's control has been defined. In this problem the

pursuer's control appears linearly in the Hamiltonian and singular arcs

may occur in the solution. A sufficient condition for the existence of

a saddle point for this class of problems is derived.

An indirect numerical technique has been proposed to generate a rapid

and accurate solution to a class of problems with linear state equations

in which singular arcs occur. Then, by linearization this technique is

extended to solve a class of problems with non-linear state equations.

By modifying this technique a second approach has ? een obtained that can

solve a broader class of singular problems with linear state equations.

The effect of the deviation of one player from the saddle point

strategy on the performance index and the opponent's strategy has been

studied for a two person zero-sum differential game with perfect

information. An Inverse systm technique is used to determine the

opponent's strategy by periodically measuring the state or the output

of the system. Then, the proposed technique for singular problems is

applied periodically to generate an approximate closed loop solution

(which takes into consideration the deviation of the opponent from

the saddle point trajectory) to achieve better performance than simply

. following the optimal open loop solution. A numerical example is

presented to illustrate the efficiency of the proposed algorithm,

*" and, comparisons have been made between the results of the open loop

and closed loop solutions.
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ABSTRACT

In this report a class of linear quadratic pursuit-evasion games with

bounds on the pursuer's control has been defined. In this problem the

pursuer's control appears linearly in the Hamiltonian and singular arcs

may occur in the solution. A sufficient condition for the existence of

a saddle point for this class of problems is derived.

An indirect numerical technique has been proposed to generate a rapid

and accurate solution to a class of problems with linear state equations

in which singular arcs occur. Then, by linearization this technique is

extended to solve a class of problems with non-linear state equations.

*By modifying this technique a second approach has been obtained that can

* solve a broader class of singular problems with linear state equations.

The effect of the deviation of one player from the saddle point

strategy on the performance index and the opponent's strategy has been

studied for a two person zero-sum differential game with perfect

information. An inverse system technique is used to determine the

opponent's strategy by periodically measuring the state or the output

of the system. Then, the proposed technique for singular problems is

applied periodically to generate an approximate closed loop solution

(which takes into consideration the deviation of the opponent from

the saddle point trajectory) to achieve better performance than simply

following the optimal open loop solution. A numerical example is

presented to illustrate the efficiency of the proposed algorithm,

and, comparisons have been made between the results of the open loop

and closed loop solutions.
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CHATER 1

INTRcxCTICK. REVI AND CIASSIICATICK OF GAMES

SCOPE OF THE D33SEETATICK

In the literature of zero-sum differential game theory a great

deal of attention has been directed towards the pursuit-evasion games.

This is due to applicability of this theory to military oriented prob-

lems or physical problems in areas such as engineering and economics.

In many problems in these areas signularity is a source of difficulty

"* for obtaining an exact solution. Singular arcs quite often occur in

problems when one or more components of the controls appear linearly

in the Hamiltonian function. Some effort is required to study differ-

ential games with singular arcs and to find an efficient technique to

generate an accurate solution. Analytical solutions, in general, can-

not be found except for linear quadratic end a few simple non-linear

differential game problems. Therefore, this research is focused on

the computational aspects of the singular problems. Our effort is to

find an efficient technique with accuracy and rapid convergence which

can be used for on-line purposes.

A comon approach to the zero-sum differential game is to find a

joint optiml solution for which wach player assumes the other player

is rational and uses his optimal strategy. Although this assumption

baslcally is correct there are many reasons why a player my not be

aAe to fol" w the exact saddle point solution. For example, bias error

In" couroller, a lack of accuracy in the computational technique or

;£'{ ,? ~~~~~~~~~~~~..... .. -,, .. • .....- -- ,. ., ... ......



?suboptimal playing of players will cause some deviation from the real

optimal trajectories.

One way that a player can take partial advantage of the deviation

of the opponent fran the optimal open loop strategy is to measure the

state of the game periodically and at each time of measurement apply

"" the saddle point strategy assuming the other player plays optimally.

It would be more desirable to find out the oppenent's non-optimal

strategy (if it is possible) and consider this strategy as an additional

known input to the system and solve a one-sided optimization problem.

By this method one can gain more than he could by using his own optimal

open loop policy.

In differential games the strategy of the opponent can be deter-

mined periodically throgh an inverse system if such a system exists

and there is perfect information of the system states. By pariodically

solving an optimal control problem, using the proposed numerical tech-

nique an approximate closed-loop strategy dependent solution can be

obtained for singular problems.

In order to put the present work in perspective we briefly review

the highlights of the game theory in this chapter.

1.1 Review and Classification of Games

In the game theory there are different classification schemes.

One of the proposed shcmes is as such:

* Static Games, which are not associated with time., and

Dynamic Games, which have time evolution. All klnds of game problems

are based on the rincept of optimization theory.

2



Both static and dynamic optimization problems consist of three des-

criptive elements which were defined by Ho(II) in the framework of

Generalized Control Theory. These are payoff functions or performance

index, controller, and avaialable data to the controller. Once these

elements are specified, further classifications can be made.

Static games can be continuous or discrete. In a continuous static

game, the payoff function is expressed as a continuous algebraic rela-

tionship and there are infinite numbers of strategies for each player.

The discrete static game is sometimes called a matrix or bimatrix game.

In these types of games there are" finite numbers of strategies for each

player. If the sum of the payoffs to each of the players is zero, the

game is a zero sum game, otherwise It. a non-zero-sum game. If the

sum of the payoffs is constant the game is called a constant sum game.

The other major class of games is dynamic or differential games

in which the state of the game evolves as a continuous function of

time, and the strategies in these games are also continuous functions

of time. In this type of game the system is generally expressed by a

vector differential equation of the form:

i~t) =f(x~t),U~t),vt),t)

with a given initial state x(tO) = x 0  and a scalar payoff function

J.= h(x(t + L(x(t),u(t),v(t),t)dt
t0

when the state of the game evolves in discrete times and strategies are

also implemented in discrete time, then, the game is called a discrete

0"3.
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differential game. In this type of game the dynamic system is generally

expressed by a vector difference equation of the form:

x+ 1 - (xxVCK)

with a given initial state x(O) - x0 and a scalar payoff function

N-I

J =h(3 9N) + 1. L(x~,uK.-VI11,)
& 0.

Games can be categorized according to the information data to the

controllers. When each player has perfect information about the state

of the game, the system structure and the other player's payoff

function, then, the game is called a perfect information game. If same

of the states are not measurable in the game and/or parameters of the

game are unknown (at least to one player) an Imperfect information

game results. The game is called stochastic game if at least one

player has uncertain or randon knowledge of some states of system's

parameters.

Games can be classified according to the goal of the game.

Game of Kind or Qualitative Game. In this game the payoff func-

tion of the ges is usually expressed in a discrete way as a win or

loss. For example, the cai7atre occurs or does not occur in a pursuit-

evasion game.



Game of Degree or Quantitative Game. In this type of game the

payoff is usually a continuous functional. For example, in a pursuit-

evasion game, one player tries to minimize and the other tries to

maximize the separation distance at some final time. It is assumed

that a capture does not occur during the game.

Strategies which are used in dynamic games can be classified as:

1. Open Loop Strategies, in which controls are functions of

time and initial conditions, e.g., u a u(tx 0 ,t 0 ). The dis&dvantage

of this kind of strategy in dynamic game problems is the inability to

take advantage of non-optimally playing of the opponents. This

strategy can be identified for the entire time of the game before the

game starts.

2. Closed Loop Strategies, in which controls are functions of

time and/or current state, .e.g., u - u(x,t). This kind of strategy

can take partial advantage of non-optimally playing of the opponent,

because it will be assumed that the opponent will play optimally from

the time of measurement on.

In a differential game problem if a player chooses his strategy

based on information of his opponent non-optimally playing strategy,

he may be able to achieve a better performance than the closed loop

solution. The strategy which is chosen in this manner is called

closed-loop strategy dependent.

Pure and Mixed Strategies. If at each instant of time during the

evolution of the game the values of the strategies are known the game

is called pure strategy game. But if the strategies at each point of



time are randomized and their characteristics are specified by probabil-

ity density functions, the game is called mexed strategy game. Pare

strategy games can be considered as a special case of mixed strategy

games in which the probability of same particular controls are equal to

one. Although In a static or*& discrete and multistage game the con-

cept of mixed strategy can be easily visualized, in continuons dynamic

games the visualiation is very difficult. Thus, it has not found

much application in the analysis of differential games. In dynic

games pire or mixed strategies can be open loop or closed loop.

1.2 Types of Solutions

As was mentioned earlier in this chapter, games may be classified

as zero- or no-zero sum games.

In zero sum games one player tries to minimize and the other player

tries to maxwm e payoff functions. In such games a saddle point solu-

tion is sought such that each player optimizes his objective assuming

the other player does the same. The resulting value of the payoff

function is called the value of the game. The mathematical definition

of the saddle point for both static and dynamic games is:

J<U*qv) <J(u*,V*) <J(uv*)

where in a dynamic game u and v are functions of time and/or current

states.

In non-zero-sum games there are different types of solutions, i.e.,

Nash equilibriv solutions, non-inferior solution (or parato optimal

sets) and mrmms solutions.

6
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Nash Solutions. If ui  is the strategy for ith player and

J'. I( 1 ,...s,) is his cost functional, then a Nash solution u is

defined by the following relationship:

ere Ji(u1 "'",is'" UN<Jiu 1 '""ui'"" )

?i where

ui u i ,

which implies that no player can improve his payoff by unilaterally

deviating fron his Nash solution, provided all other players use their

Nash strategies. This solution has the characteristic of Leing pro-

tected against cheating; however, each player should play rationally,

i.e., no player can attempt to increase another player's cost without

regard to his own loss.

Note: When the game is zero sum, i.e., J1 aJ2 the Nash solu-

tion is the same as the saddle point solution.

Noninferior Solutions. It may be possible to achieve simultan-

ecously a superior payoff than the Nash solution which was a non-cooper-

ative solution, if certain cooperation among the players is made in a

prescribed manner.

This kind of solution is used in classical game theory and modern

welfare economics. In this set of solutions no player can achieve a

better pay-off unless it is at the expense of the other player.

- A
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Min-Max Solution. This kind of solution represents a 'security

* th
level" for each player. The min-max solution u for the i player

is the strategy which satisfies

Ji(u * Mi MmaxJ ±(ul, UN) V
I, u I uj

This relationship imples that the other players try to do the

worst damage to the i player -and the I th player tries to gain

the most.

1.3 Review of Methods of Solutions for Differential Games

The study of differential games was initiated by Isaacs in 1954.

His approach was formal and closely resembled the dynamic prograing

approach to optimization problems. In 1964 Berkowitz and Fleming

applied a calculus of variation technique to a simple differential

game. I ater on Berkowitz treated a wider class of differential games

by the same technique. More recently functional analysis has been

applied to lifferential game problems as a rigorous approach, and

certain highly mathematical problems without direct physical inter-

pretation have been solved by this approach (Freedman ( 2)).

Geometric approach is another rigorous and interesting technique to

differential games which provides some insight into the problems and

has been used by some authors (Balaquier, Gerald, Lietman ( 58 ) ) .

In 1969 Bryson and Ho14) treated a class of zero-sum-linear

quadratic differential games and by the application of the set of

8



necessary conditions for the saddle point. They obtained a set of

closed loop solutions. Then by forming soe auxiliary problem they

verified the existence of the saddle point. In 1970, McFarland used

6,6

the same class of problem and, without the assupion of a sadd

point used another approach to show the existence of the saddl point.

Although the obtained solutions for this class of problems are analytic-

al, hovever, the solution to the same class of problems with control

and/or state constraints generally cannot be analytica( (17).

In order to solve problems not having analytical soltions, some

numerical techniques have been proposed to generate optimal open loop

solutions. In these techniques it has been assumed that the sa

point solution exists and singularity does not occur. Sevdral tech-

niques which are used in optimal control problems have been applied to

differential game problems, including neighboring optimal techniques

(which ate closely associated with successive sweep method), quasi-

linearization, and differential dynamic programing.

There are a few closed loop techniques that have been proposed

for generating a near optimal solution. Anderson ( 4o.4 ) bas worked on

an updating technique for generating a near optimal closed loop solu-

tion to a zero sum perfect information differential game by period-

ically Updating the solution to the two point boundary value problem

obtained by the application of the necessary condition for the saddle

point solution. Jachimoitz ( T ) has proposed an adaptive technique,

based on estimation theory, to determine the non-optimal strategy of

the opponent through the state measurement. Then by converting the

game to a one-sided optimal control problem he generated a near optimal

9



closed loop solution for non-singular differential games. Behn and

SHo (56) and Gonzalez have used inverse systems to determine the

opponent strategy for the solution of non-singular stochastic and

deterministic zero sum differential games.

The review of the literature in this area shows that the camyata-

tional aspect of singular game problems requires special attention and

it is the subject of this dissertation.

1.4 Objective and Scope of the Dissertation

It is the main purpose of this dissertation to present a tech-

nique that generates an accurate and rapid optimal open loop solution

to a class of singular differential game problems.

In the next chapter some definitions and theorems which are comon

between sigaular optimal control theory and singular differential game

theory have been introduced. These results are very useful in provid-

ing insight to the form of the singular solutions of the problems. In

this chapter we define a new class of two-person zero-sum differential

games (generalized pursuit-evasion game) with pure strategy and per-

fect information, which have linear state equations. In this problem

the pursuer's and evader's controls are respectively bounded and un-

bounded and the performance index is quadratic in terms of the state

and the evader' s control. The final time is fixed and the game is

considered as a game of degree.

Some conditions for the strict convexity and strict concavity

of the performance index with respect to the pursuer's and the evader's

controls are derived to guarantee the existence of a unique saddle

10



point solution in this class of problems.

In Chapter 3 an indirect numerical technique with two approaches

are offered. The first approach can only solve problems with singular

arcs. In this technique the sequence of controls in the entire time

interval of the game are estimated. The solution to the set of two

point boundary value problems (obtained from the necessary conditions

for optimality) is generated by an iterative procedure using Newton' s

method. This approach iterates only on switching times between control

arcs and has at least quadratic convergence. This technique is extended

to a class of non-linear differential games by linearization.

The second approach which is semehow similar to the first approach

can also solve linear bang band and highly dimensional problems. The

solution to the set of TPBVP is obtained by iterating on the initial

costates and switching times between control arcs.

Numerical results of a Vhysical example are reported in this

chapter.

Chapter 4 discusses closed loop on line solutions for this class

of differential games. The concept of the inverse system is introduced.

The existence of the inverse system is discussed and an algoritbb is

used which incorporates the necessary and sufficient condition for its

existence. The proposed algorithm, together with the inverse system is

applied to generate an approximate closed-loop strategy dependent solu-

tion. Comnptatimnal conparisons have been made between the saddle point

solutions and the cases that one player deviates from the saddle point

strategy, and the other plays open loop and closed loop strategies.

11
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Chapter 5u arizes al the results obtained in this report.

Advataes and disadvantages of numerical techniques are discussed.

Soe areas of work for future research are also recomnended.

r
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CH&PER 2

SINGJIAR OPTD(AL CONTROL AND DI 7ERENTIAL GAME PROBLEMS

Singular arcs may arise in many optimal control problems. In

the past two decades singularity has received considerable theoretical

attention. This problem was defined by Rozonoer (1959) and has been

studied by Johnson and Gibson (1963), Robbins (1966), Goh (1966),

McDonell and Powers (1970). The authors have developed some necessary

conditions and also McDonell and Powers have obtained sufficient

conditions for optimal control assuming there exists a totally sing-

Sular extremal. Singular solutions in optimal control have been thought

by many people to be of only academic interest. However, singular

arcs quite often appear in engineering, economics and chemical problems.

Siebenthal and Aris (1964) have shown that optimal singular arcs occur

in chemical reactor startup problems. Optimal trajectories of mass-

varying vehicles which are subjected to aerodynamic forces include

singular arcs. The sounding rocket problem(
,

) Saturn Guidance singular

flat earth 2) and resource allocation problems are other examples of

singularities. In the following section we will formulate an optimal

control problem and discuss the possibility of occurrence of singular

arcs and later on we will extend this subject to differential game

• . problems.

2.1 Problem Formulation

The f ndamental problem of optimal control theory can be formu-

lated in equivalent forms of Bolza, Mayer and Lagrange. The Bolza

problem is the following:

13
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Find the control function u(.) which minimizes (or maximizes)

the performance functional

tf

J - h(x(tf),t f) + t 0 L(x,ut)dt (2.1-1)

subject to:

ii (t). - (x(t),u(t),t) (2.1-2)

x(t0 ) - Zo  given (2.1-3)

u(-) belongs to the set u. and t is a member of

x is an n dimensional state vector. u is an m dimensional control

vector, h and L are scalar functions and are assumed smooth. The

control set is defined by

U fu(.):ui( -) is piecewise continuous in time, Iui(.)i <

to _< t < tfV i w 1,2,...,] (2.1-)

The initial state and initial time are specified in the final

state and final time may be specified or unspecified.

As a prerequisite to solving this problem by the maximum principle

we define the Hamiltonian as

H(x,u,,t) L(x,u,t) + %Tf(x,u,t) (2.1-5)

Necessary conditions for u to be an optimal control are

.4



- H (x*(t)O*(t)t)(2.1-6)

(z(t,u*(t),? (t),t) (2.1-7)

H(x* (t),u* (t),t) C*Ct),u~t),* (t)

for all admissible u(t) and for all t c (totf] and boudary con-

ditions

[ (x*tf),tf) - %*(tf)]T 6Xf + [H(*(tf),u*tf),X*(tf),tf)

+ ;T (x(tf),tf)6tf - 0 (2.1-9)

where x is an n dimensional tagrangian multiplier vector. The

optimal control u should satisfy (2.1-8) and usually extremal u is

obtained as

u - arg min H(x,u,%,t) (2.1-0)
U

and in the case that there are bounds on the control such that

and the Hamiltonian is linear in terms of ui assuming the conponents

of the control are independent, the extremal controls can be expressed

15



ui(t) " Ki(t)sga hii if Hu ( t) 0 for t C (tlt 2] (2.1-12)

where [tlt 2] belongs to time interval [totf ]

( +1 if ui<0
sgn Hui -= (2.1-13)

-I if Hu i > 0

Note that there may exist conditions such that Hui w 0 for some non-

zero time interval. Then we will have problems of singularity. With
respect to this more general problem some basic definitions and theorems

of singular optimal control problems are introduced.

Definition 2.1. If one or more components of the control function u

appear linearly in the Hamiltonian, and there exists a non-zero time

interval [ti,t 2 ] in [tO,tf] such that the coefficient of at least

one of these components we zero on (tl,t 2 ]. Then the control is said

to be singular. In this interval maximum principle (2.1-8) provides no

information about the control u and its relationship with state and
* *

costate x and .

Definition 2.2. Let u i be the ith element of the optimal singular

control vector u on the interval (tlt 2] belonging to (t0,tf],

which appears linearly in the Hamiltonian. Let 2q be the lowest

order of the time derivative of Hu in which u appears explicitlyi i
with a coefficient which is not identically zero on the subinterval of

(t 1 9 t 2 ] . Then q is called the order of the singular subarc.

16



Definition 2.3. Assuming all the components uo1 ,u0,*...,u of the con-;r

trol vector u are singular simultaneously, then u is called a

totally singular control function when

S(ZA%9t) =0 for t e [tN f](V11.

Definition 2.4. If (2.1-14) holds for arcs in K subintervals of

length Ti, i = 1,2,...,K such that

K
Z Ti <t - t (2.1-15)

then the problem is called partially singular.

So, for the existence of the singular arc it is necessary that the

Hamiltonian be a lineaxr function of at-least one component of a control

vector. The analysis of such problems is complicated by the fact that

the solution in general consists of some conbination of singular and

non-singular subarcs. The number and sequence of these subarcs are not

known a priori, and it is almost impossible to establish the existence

of singular arcs without actual numerical solutions.

The following theorem which is a necessary condition for the opt-

(31)imality of singular subarcs is due to Robbins and junction theorems

which are followed are given by McDonell and Powers ( a )

Theorem 2.1 (Generalized Legendre-Ctebsch Condition). On an optimal

singular subarc of order q, it is necessary that

(_F diq Z 0 (2.1-16)

17



and if only inequality holds it is called strengthened GIG.

The essence of the proof is given in Appendix A and the conplete

proof is found in Reference (31).

Since d / dt2q Hu is the lowest time derivative of Hu in

which control u appears explicitly in the general form, we can have

d Hu(xAt) mA(x(t),v(t),t) + B(x(t),x(t),t)us  (2.1-17)
dt*

A and B as a function of time are defined as

a(t) M A(x(t),X(t),t) (2.1-1z

K

'- (t) s B(x(t),X(t),t) (.-9

The above notations are used in the prc.,f of the theorems in this

tqhapter.

2.2 The Junctions Theorems. Although the analysis of totally singular

control problems are rather well developed, in partially singular

control problems the analysis of junction points are not yet fully

understood. Since a useful sufficient condition for such problems is

not available, one has to study the necessary conditions which are

valid in the neighborhood of a junction between singular sad no-.-

singular subarcs. It is expected that such conditions can b, used to

eliminate candidate extremals or predict beforehand the way in which

18



singular and non-singular subarcs ust be joined or whether the optimal

control is continuous or discontinuous at a Junction point.

Assuming the optimal control is well-behaved in a neighborhood of

a junction, then the following theorem holds.

Theorem 2.2. Let t5  be a point at which singular and non-singular

arcs of an optimal control u are joined, and let q be the order of

singular subarcs. Suppose the strengthened GIC condition is satisfied,

and assume that the control is piecewise analytic in a neighborhood of

t Bet u(r )  (r z 0) be the lowest order time derivative of u

which is discontinuous at ts . Then q + r is an odd integer (proof

is given in Appendix A).

Two corollaries follow from Theorem 2.2.

Corollary 1. In q even problems, assuming u is piecewise analytic,

and the strengthened GI condition is satisfied, then the optimal con-

trol is continuous at each junction.

Corollay 2. In q odd problems, assuming u is piecewise analytic,

and the strengthened GIC condition is satisfied, then the optimal con-

trol either has a jump discontinuity at each Junction or else the

singular control joins the boundary smoothly, i.e. with a continuous

first derivative.

For Theorem 2.2 strengthened GIW conditions should be satisfied

at the junction point t ae" There is also a possibility that the GIC

condition be satisfied with equality at this point. If q in the

19
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I(2q)

order of the siggular arc P 0(t) cannot be identically zero

on the singular subarc. Therefore, in view of analyticity assumptions,

a derivative of some order of O(t) must be non-zero at time t5

even if P(t s ) 0 0. This leads to the generalization of the Theorem 2.2

which is stated as a separate theorem to emphasize the important results

of Theorem 2.2.

Theorem 2.3. Let t s be a point at which singular and non-singular

subarcs of an optimal control u . are Joined, and let q be the order

of singular arc. Assume that the control is piecewise analytic in a

neighborhood of ts, and let 0(m) (m 2 0) be the lowest order

derivative of the GIC expression a Hu 2 q) - which is non-zero at

S then

1. if m ' r, q + r +m is an odd integer

2. if m >r, sgn[(m)(t)m(t)] = (.l)q+rn

The proof of this theorem is similar to that for Theorem 2.2.

The conclusion of this theorem is that if m > r, O(m) may not

be continuous at junction t s and if m : r, O(m) is continuous at

Junction point t5 .

Theorems 2.2 and 2.3 require the assumption of piecewise analy-

ticity of the control in a neighborhood of the Junction.

This hypothesis is usually satisfied on the singular subarc, but

not always on the nonsingular subarc. Thus, we are led to consider

properties which do not require the assumption of analyticity as stated

in the following theorem.

20



Theorem 2.41. Let u be an optinal control which contains both non-

singular subarcs and piecewise continuous qth order singular subarcs.

1. If Hu(2q) 4 0 on the non-singular side of a junction, then

the control is discontinuous.

2. If A's 0, B 4 0 and K 0 at a Junction then, the control

is discontinuous.

3. If u is piecewise continuous on the non-singular subarc

d2q' I dt2q Hu = 0 on the non-singular side of a junction,

and B 4 0 at the junction then the control is continuous.

Proof. For Case 1) knowing that d. / dt2q Hu a 0 on the singular

subarc and d2q / dt2q Hu 4 0 on the side of nonsingular subarc we

have

a(t) + 0(ts)K(t 8 ) $ 0 - a(t ) + A(ts)u,(ts)

From this relationship we obtain IU (t S)l i(t8). Therefore u

is discontinuous.

For Case 2) a(t)= 0 and O(tS) 4 0 imply u(ts) - 0, and

since K(ta) 4 0, the control is discontinuous.

For Case 3) since d 1 / dt2q Hu w 0 for both singular and

non-singular subarcs, we will have

a(ts + P(ts)%(ts ) - 0 . a(ts) + 0(ts)us(ts)

and since O(ta) 0, then, v,(t s) - us(ts). Therefore the control

is continuous at the junction.

21
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In order to see how the singular subarc may occur in a problem we

consider a simple scalar example.

2.3 Example of a Singular Control Problem . Find control u to

minimize
tf

1 X 2 (t)dt(23)

subject to

i(t) - u(t) X(t0 ) - 10 (2.3-2)

given

lul :1 (2.3-3)

where tf is fixed final time.

The Hamiltonian is defined

= x2 +u (2.3-4)
2

and the set of necessary and boundary conditions are

X M u (2.3-5)

= -z (2.3-6)

*(t) - 0 X(0) - 10 (2.3-7)

22



The optimal control u is obtained as the following

+1 if X(t) <0
U -1 if X(t) >0

undetermined if X(t) - 0

If X(t) a 0we will have

X'(t) W 0 => X(t) a 0 => i(t) 0 o => Us(t) 0 0 (2.3-9)

Also the strengthened GIE condition

- > 0 (2.3-10)

for singular arcs is satsified.

Now by changing the values of initial condition, final time and

final state, we will consider several different cases.

Case 1. Let x(O) M 1, tf- 1 and x(l) be free, then the solution

will be

u*(t) - -1

z*(t) - -t + 1 fr t C (op] (2.3-n1)
*(t) - -' It+ t +

The optImal control and trajectories are shown in Figures (2.1-a)

and (2.1-b).

23
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ifj

Figure 2.1-a. State and costate trajectories in a nonsingu3,r solution.

UW(4

Figure 2.1-b. Nonsingular optimal control.
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We see that with this initial state and final time singularity

does not occur in any interval of the problem.

Case 2. Let x(O) .1, tf. 2 and x(2) be free, then the solution

is obtained as

x (t) - -t + 1 for t e [o,.1 (2.3-12)

and

u*(t) for 1 <t <2 (2.3-13)
*1 -

x () M 0
. for t e [l,21 (2.3-14)
*(t) o

The optimal control and trajectories are shown in Figure 2.2-a

and 2.2-b.

XIt,

Figure 2.2-a. .State and costate trajectories in nonsingular and singular
intervals.
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i2

1. k

-I

FigLre 2.2-b. Noasingular and singular controls.

It is noticed that when the final time in Case 1 is increased from 1

to 2, and initial state is the same and final state remains free,

singular arc occurs in the interval t e [1,2].

Case 3. Let x(O) - 1, t f- 2 and x(2) - 1. The solution will be

u*(t) - -1 )
x*(t). --t + 1 t C [0,1] (2.3-15)

1*t t 2 + t- 1

u*(t) - +1 1 < t < 2 (2.3-16)

x*(t),. t - 1.

t e [1,2] (2.3-17)
1t) 2 + t

26



The optiml control and trajectories are shown in Figures 2.3-a
p "and 2.3-b.

I'i

Figure 2.3-a. State and costate trajectories (nonsingular solution)

U1

o 2.

, --

Figure 2.3-b. Bang-Bang Control.
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In this case we have fixed the final state. This causes the

i solution of Case 2 to change from a singular solution to a bang-bang

solution.

Case .. Now we modify Case 3 by increasing the final time from tf = 2

to tf 3-

The solution is obtained as

U*(t).-.
* I

x (t) . -t + 1 t [ (o,1] (2.3-18)

,*(t) - 1 t 2  t +

2

U (t) 0 o < t < 2 (2.3-19)

x*(t) 0

t t £ (1,21 (2.3-20)

't=1 1

x*(t), =t - 2 t [ (2,31 (2.3-21)

-
,,. )t= 2 + 2t 2

The optimal control and trajectories are shown in Figures

2.4-a and 2.4-b.

28
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Figure 2. 4-a&. State and costate trajectories with singular' interval,

Figure 2.14-b. Bang-singular-bang conttrol.

29



It is noticed that in Case 3, by changing the final time, the solu-

tion of the problem changes from bang-bang to a solution with singular

arc. Indeed there are many simple changes which can be made to the

effect that singularity will occur or be removed. For example, in

Case 2, if the initial condition is increased from x(0) =1 to x(O) = 2

with the same time duration, singular control will be removed fron the

solution and the control solution will stay on the lower bound until the

final time is reached.

Singular arcs have also appeared in differential game problems.

The Homicidal Chauffeur game ( " is a lirsuit-evasion game with the

possibility of singular arc. Problems of Thrust-limited rockoets sub-

jected to aerodynamic forces are another example of pursuit-evasion

games with the possibility of singular or intermediate thrust arcs for

either or both Vursuer and evader. In the next section we formulate a

differential game problem and consider cases with singular arcs.

S.4 Singular Differential Game Problem

A Bolza type differential game problem can be formulated as the

following
tf

J(u,v) - h(x(tf),tf) + J t L(x,u,v,t)dt (2.4-1)

subject to

z(t) - f(X,u,v,t) (2.4-2)

x(t o ) 0 given. (2.4-3)

30



There are two players, (P) is trying to minimize J by control

u and (E) is trying to maximize J by control v. It is assumed

that both players have perfect information about the system, and also

each player has partial control over the game.

The problem is to determine u and v such that

J(u*,v) _< J(u ,v ) <J(u,v*) (2.4-4)

* *

holds. The-solutions specified by u and v are optimal and termed

the saddle point solution.

u(-) and v(.) respectively belong to the sets U and V. The

final time is assumed to be fixed. h and L are sca ltto

ad assme to be smooth. The control sets are defined by

U [u(.) :uj is ptcwis1e coritiaaa.us in timp Iu.j) < :"j i

to <5 t < t f  i-i>..= (2.14-5)

V (v():vj~ is piecsi33 continaous in time j <

t 0 t !9tf j m 1,2,...,r] (2.4-6)

the initial state and initial time are fixed and final state is free.

In order to find the saddle point, the Hamiltonian is defined as

H(z,u;v,t) - L(x,u,v,t) + %. f(x,u,vt) (2.4-8)
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where X c Rn  is tagrangian multiplier.

Assuming there exists a saddle point solution, the set of

necessary conditions for the saddle point solutions are

ji*(t). f(*,u ,v*,t) z(t) = o (2.4-9)

** * .* * ."

-H (21.-10)
: (=*, ,X u ,vvt) r. H(x ,9, IV ,t) :5 H(x*,\ ,utv It) (2.4-11)

The saddle point solution should satisfy (2.14.1) and usually is

obtained as

u = arg min H(x*,u,v ,. ,t) (2.4-13)

V - arg max H Vu,v,\ ,t) (2.4-1.)
V

In the case that Hamiltonian is linear in terms of components of

v and u and there.are bounds on controls, i.e.

lu~) I rLi . l,2,...,m (2.4-15)

IV j I 1C 3i o l,2,...r (2.4-16)
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optimal controls can be expressed as:

u 1 - "-sgn Hu u(Z , ,u,v ,t) if Hu U 0
.. "

K:. * . *O V5if HVa 0

[:i assuming all eCmnpoenti of:u and y are independent of each other.

! Note that simila to the optimal control problems there may exist

conditions such that Hu and Ev or both be equal to zero for some

non-zero time interval in the gsme. Then we will face the problem of

singularity.

Definition 2.5. If one or more components of the control functions u

or v or both appear linearly in the Hamiltonian defined in (2.4-8)

and there exists a non-zero subinterval of time [t 1 ,t 2 ] between t

and tf such that the coefficient of at least one of the control com-

ponents is zero on this subinterval. The control is said to be singular

and this subinterval is said to be a singular interval. The maxinmu

principle (2.--11) provides no information about these controls and

their relationship with x and %* n this interval.

All the definitions in Section 2.1 about the singularity in optimal

control problems will hold for singular two-sided problems and

Anderson(38) has derived necessary conditions for optiality of singular

arcs in differential gemes vhch are exactly the sae as necessary

33,..............

t- "



conditions for optimality of singular control problems. Thus, the

* analog.of the GIX condition in the two-sided problems are

]2

~and the analysis of aunction points carries over as well.

":'i2.5 Derivation of Singular Control. For simplicity of calcution a

restricted class of nonlinear singular differential gaines is considered.

Find the saddle point solution u and v to the payroff

_J - h([( Ha)) (2.-18)

. subject to:

aI (t) - f1(x)u. + (x,v) (2.5-2)

"(o) I d0 gven (2.5-3)

ndwhere xan,aly Rr, u ijsunctl, f and f 2  are nxoe vector

restri functions at least n times differentiable with respect to x,

h is a moth scalar function, and tv is fixed. Ass ing the saddle

~point solutioQ exists, the set of necessary condition. are obtained as

the foll+i(5ng.
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Define the Hamiotonian:

H(xXVu~v) - ,T(xu+,Tf(v)(2.5-5)

since v is not required to be bounded. We form

-0 (2.5-6)

and solve for the control v . (Assuming v can be expressed explicitly

in terms of % and ()

substituting (2.5-7) into the state and costate equations we will have

X(t) = fl(x)u + f2(x,,(x,)) (2.5-8)

(t) . fTu -fT, (2.5-9)

fi(x) 2+(x, ')
where flM''. and f f (x

?or a nonsingular interval

u.M -K Sn HU HU 0 (2.5-10)

and for a singular interval

6l1 0 (2.5-11)

35
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To find the singular control in this interval we consider (2.5-11)

and its respective time derivatives

( = => XTf , = 0 (2.5-12)

as it is noticed this relationship does not yield any information about

singular control u s . So we take the time derivative of (2.5-12) sub-

stituting from (2.5-8) and (2.5-9) for z and % and we have

dH T
TF( F ) 0 .> X(f~if 2 - f~f 1 ) -0 (2.5-13)

(2.5-13) still does not yield any information about singular control u s

Let

g(x) = f1 1 f2 - f 2 fl

(2.5-14)

d 2  )HO T. T f-f )
dt

+ .T( f2 - f2.9) - 0 (2.5-15)

if X (gzfl " -fg) 0 0 the singular control

Us (z, %) XTV2 -fg) (2.5-16)
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if

(gf - fg) 0 o (2.5-17)

we continue taking time derivatives of (2.5-17) until u appears

explicitly with .a nonzero coefficient. In most porblems of interest

u appears in the order time derivative of (2.5-12). If this

control is optimal then it satisfies the strengthened GLC condition.

I',
2.6 Linear Quadratic Singular Differential Game with Bound on Control.

A class of generalized linear pursuit-evasion differential game is

described by the following state equations and performance index

tf T T
J X(tf)sx(t) f + 12J (XTQX - vTRv)dt (2.6-1)

subject to: to

z(t)m x+Bu +Cv (2.6-2)

z(to) 0 given (2.6-3)

Jul S K (2.6- 4 )

where

x n x 1 state vector

L u scala

v r x l" vector

37
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A, B, C are continuous time varying matrices with compatible sizes.

S n X n continuous time varying positive semidefinite matrix.

Q n X n continuous time varying positive definite matrix.

R r x r continuous time varying positive definite bounded symmetric

matrix.

tf fixed final time.

In this class of problems there are two players. Pursuer, (P)

seeks control u to minimize J, and evader (E) tries to find con-

trol over his own state.

In the next section we will show that this problem under some

conditions possesses a unique saddle point solution.

2.6.1. Saddle Point Conditions. We now impose some conditions on the

matrices A, B, C, Q and R to assure the existence of the saddle

point.

In this class of linear quadratic differential game for the

existence of a unique saddle point, the performance index should be

strictly convex with respect to u for any fixed v and strictly

concave with respect to v for any fixed a.

Strict convexity of J with respect to u is easily verified

by the given assumption of positive definiteness of Q and controll-

ability of the system (AB) and since u belongs to a set of convex,

closed and bounded there will be a unique minimum u for any given v.

To establish concavity of J with respect to v some conditions

are required so that concavity of the second term dominates convexity
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of the first term of the integrand.

First assaming S 0, the solution to (2.6-2) is given by

t t

x(t) . p(t,to)x(to) + j q)(t,)(r)u(,r)dr + J (t,)c(T)v(T)dr
t to

0(2.6-5)

Assuming u is fixed and substituting frm (2.6-5) into (2.6-1)

and considering just those terms which are nonlinear in v we will get

tf t t

( C 0(tT)C(")v(-)"T)TQ ( j0 (P(t,'r)(T) V(T)dr)dt
t0 0 t0

tf
" r v(t)1v(t)dt (2.6-6)

For strict concavity of J with respect to v assuming (AC) is

controllable it wl be sufficient to show

J'(v) < 0 (2.6-7)

t

v(t) e V such that J jv(t)12dt <.

Define 
0

w(t) R-1/2 v(t) V t e (t0 tf]  (2.6-8)

r

lI(t)l~ (1~ C lw.(t)12) 1/2 (2.6-9)
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,,,[ I 12 I IW~t) Il dt) (2.6-10)
c:. t

Satisfaction of (2.6-7) is equivalent to show-Ing that

* t t t

to 0 to

't
TW v ()w(-r)- < 0 (2.6-3.)

We normalize w(r) by defining

C(T) (2.6-12)

so

- 1 (2.6-13)

Assming 1f1 2~0and dividing (2.6-3.1) by jl~rII and using the

relationship (2.6-12) it is enough to show

tf t t

.. ( j pt¢r)a.)A-/2(P~tTCTA3 -(T)ft)dt <1
to o. 0

-.: (2. 6-lzi)

Using norm inequalities
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R-1/2 -1/2

S ) ( '\u)JC(TJ) dT) (P,) (T d' r)
to.t

t0 0t t 0

s ~(,~()R1/2iI 2 IIQ)II, t QIId
to0 to to

Ht t

- 104j~(t.-r)c(r)Ed 1/2d IIQII t djOT) 112.6-15)t d

to to

Therefore

*t t t
sup ( 5 -1/2g g(t,r)c(T)R-1/2g~rd~t

I;I1 t0  to to
sJt - t

:5 j i t 1(t,-r)cr)R/I dlid t

(2.6-16)

where

~Q'SupIQII (2.6-17)

So if

it (t - t0 ) t 1(t,rT)C(i)R Ildioit< 1 (2.6-18)

Then



tf t t

I (J (t,'V)C(T)v(T)dT)TQ( J' (t,-r)c(Tr)v('r)dr)dt
to totf

. r vT(t)Rw(t)dt <0 (2.6-19)
to

I
Note condition (2.6-18) implies the negative definiteness of J

with respect to v which easi,j results in the concavity of J with

respect to v.

Besides (2.6-18) we must show that. J is radially unbounded in v

in order to establish the existence of saddle points.

It can be verified that J(u,v) -.. as llvjj -- for any fixed u

by the following relationships

tf t t

( f P(t,T)C(T)v(T)dr) T Q( j (P(t,-r)C(.r)V(')d'r)dt'It t
t0 t0 to0

t t
f-f.1/2 2 2

(t -to) J 10(t, r)c(-r)R dTIII1dt*wII2to t0

(2.6-20)

and
t0 v(t)Rv(t)dt - IwII(2.6-2)

Subtracting (2.6-20) from (2.6-19) we will obtain

to t
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From (2.6-18), the above parenthesis is a positive constant nmber

for any fixed tf . Since R is bounded ljvjj --oimplies that

2 a f > 0 JI(v) So it is con-

I .

N ecuded that J(u,v) is radially unbounded for any fixed u.

Since for this class of problems all the required conditions for

the existence of a saddle point hold, so (2.6-18) is a sufficient con-

dition for the existence of a saddle point.

In a more general case when S 4 0 the term outside the integral

of the performance index will yield a similar term

to

which is added to the left side of (2.6-18).

2.6.2. Necessary Conditions. Assuming there exist a saddle point

solution, define Hamiltonian as

1 T 1 Tv+ A . XTu+ T
H xXc (2.6-24)

where . is an n x 1 lagn gian multiplier vector.

The set of necessary conditions are

0*o"l * * *

x -Ax + Bu +0? x(t 0 ) - x0  (2.6-25)

* x -A TX (2.6-26)

)* THv = X (2.6-27)

4'3

" 

. .. . . .



H(X , Pu,v) H(x ,u,v) (x*, uv (2.6-28)

Ssx *(t f) (2.6-29)

The strengthened GIC condition for the optimality of the singular

control of the first order

2

d H TB>0 (2.6-30)

I

is satisfied.

Fro (2.6-27) control v is obtained as

v* = Rk3T * (2.6-31)

Substituting for v from (2.6-31) in the state equaticns, the set

of two point boundary value problem will be
'I

i(t) aAx + Bu - CI-3C Tx (2.6-32)

(t) = -U - AT% (2.6-33)

X(to) - 1o (2.6-34)

X(tf) - Sx(tf) (2.6-35)

The control u is obtained as

-4,



" +K if BT%<O to t [ t2

U-K ifBTx>0 for t 1* (t lt 2 J

undetermined if BT7 0 for t < t < t

(2.6-36)

As has been mentioned in the interval of time that &1(x,,,u) / u

B T X a 0, the control is singular and obtained by taking successive

time derivatives of ZH/ u until u explicitly appears. To calcu-

late singular control us (X,X) re find

9uD%.0o t < t < t2  (2.6-37)

d H 'T T.T T TB + x m -BQx + (B -B A)%.0 for t 1 < t < t2

(2.6-38)

Continue taking time derivatives of (2.6-38) since BTQO > 0 then the

singular control appears in the next relationship so that

us = Mx + NX t < t < t2  (2.6-39)

where

T 1 T *T T *T TM (B QB) (B AQ - BQ + B Q - B q - BTOA) (2.6-41)

*T -. T - -lT T e T TBTT TA +BTpAT) (26I
(B 0) c()c+BB'-BA (2.6-42

)45
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By substitution of non-singular and singular controls in the state

p equations we will obtain

"(t) Ax - CR'CT + BK (2.6-43)

.,, Q(t) -- AT, (2.6-414)

which hold on non-singular interval and

: i(t) (A + 34)x + (M -0R'CT)7) (2.6-45)

';() -x A"% (2.6-46)

which hold on singular intervals. In Chapter 3 we will shov how to

treat these sets of equations with given and obtained boundary condi-

tions as a mltipoint boundary value problem.

Remark. According to Reference (4) the existence of an optimal v can

be verified through an auxiliary problem assm~ing U*(t) is an optimal

open loop solution

t f
max (4: x (t±)SX(t) + j (z Qx - TRv)dt} (2.7-7)

v 2t
0

.W subject to:

i(t) Am + Bu + Cv (2.6- 48)
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and

u°- u"(t) a time function (2.6-4+9)

The solution for v is

v(t) = R-CT(E + s) (2.6-50)

where

-(t) + (KCWT + AT)s + IBu) = 0 (2.6-51)

i(t) + ATK +KA + KR'CTK + Q 0 (K(tf) S

(2.6-52)

Since u*(t) is bounded from the above we conclude that there

will be an optimal v if there exists a finite solution to the Ricatti

equation (2.6-52) for 0 < t < tf. In such a way the existence of a

saddle point to the game (2.1-1) - (2.1-4) can be verified since there

exists a unique u in this problem.

14.7



CHAPMR 3

THE CCM11TATIMI OF. SINGUIAR OPTrMAD CONTROL AND DIMERETIAL GAMES

Despite the amount of interest in singular control problems

development of the canpttationa,l aspect of this problem requires moreIattention. Due to the control .bmonds and control discontinuities some
computational and analytical difficulties are encountered. To deal

with these kinds of difficulties some special considerations should be

taken in singular problems.

Pagurek and Woodside(28) (1968) have presented a direct method

and applied a conjugate gradient method in function space _or optimal

control problems with bounds on controls and have solved a problem

with singular arcs. In this technique the region of saturation should

be guessed a priori and some procedure is devised to improve this

guess at each iteration. Although the rate of convergence for some

:roblems has been almost good, the solution obtained by this technique

is not accurate. Also junction points between saturated and unsaturated

controls are not obtained in their exact locations. Ko and Stevens(33)

(1971) applied gradient methods to determine the optimal heat transfer

coefficient distribution along a tubular reactor. This method handles

both singular and bang bang arcs, but it obtains an approximate solu-

tion and in the presence of singular arcs has a very slow rate of con-

vergence when it gets close to the optimum. Jacobson et al. have

transformed the singular optimal control problem to a non-singular

problem by adding a quadratic integral function of control to the per-

formance index. This integral function is imltiplied by a coefficient

."



which tends to zero iteratively during the computation of non-singular

control, so that, the solution converges to the original singular one.

Jacobson, Gershwin and -Lele ( 1 9 ) (1970) have applied differential dynam-

ic programming (Jacobsen 198(60)) to the resulting non-singula.r prob-

lam and have solved several examples. This technique has given some

satisfactory results, but often computational difficulties arise when

* . the coefficient of integral tends to zero. In the same reference a

-. .* 'variant of the method called epsilon-aplha (e-a) algorithm, has been

proposed by the authors to overcome this difficulty. With this altern-

ative method another parameter a is considered and the coefficient

of the integral does not have to approach to zero. However, it still

* - does not guarantee the convergence of the singular optimal control and

accurate results cannot be obtained. In 1972 Edgar and lapidus

used the method of Jacobson 'et al together with differential dynamic

progrming and penalty function, and applied that to discretized

versions of the problem. First they developed the algorithm for linear

control problems, then they extended the technique to non-linear prob-

lems. This technique has the same comptational difficulties as that of

the method of Jacobson et al. The degree of accuracy is low, especially

since the problem is descritized, the exact switching time cannot be

obtained. Also this method is time consuming for non-linear and some

linear probl-ms. This technique has the advantage of capability of

handling problems with high dimensions. Anderson ( 27 ) (1972) proposed

an indirect method for canpitations of singular optimal control problms

with first orders of singularity. This technique iterates on initial

costates and a prescribed Terminal Error Function is minimized with

4~9
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respect to initial costates by a search technique. The sequence of

non-singular and singular controls are estimated a priori and at each

iteration switching conditions are checked and adjusted. The accuracy

of this technique is good and the rate of convergence of the method

depends on the rate of convergence of the search technique.

Yeo(37) (1975) applied quasilinearization together with (e-a)

algorithms of Jacobson to solve singular problems. This method can

have a quick rate of convergence if the coefficient of the added

quai4atic integral is too small. But, as this coefficient gets smaller

the likelihood of convergence gets smaller too. This method has a

simple programming and faster computational speed than the same method

using differential dynamic programing. In 1976 Edge and Powers(25)

in a function space quasi-Newton algorithm applied Davidon and Broyden

algorithms to optimal control problems with bounded and singular arcs.

Ezamples indicated that this method is more accurate than gradient and

conjugate gradients, but still the obtained solutions in an approxima-

tion of the real optimal solutions. In 1973 Aly 29) and Chan applied a

modified quasilinearization technique to totally singular problems and

in 1978 Aly ( 30) applied the same technique to partially singular prob-

lems with first order singularity. In this technique the sequence of

controls are estimated a priori and at each iteration the initial co-

states are adjusted to satisfy the junction conditions. This adjustment

may accelerate or may decelerate the rate of convergence of the mod-

ified quasilinearization used in this method.

In the following section we have presented an indirect method with

two approaches. The first approach solves certain groups of problems

50



which can provide n conditions at the junction of singular and non-

singular controls. In these cases we solve a set of multipoint boundary

value problem by iterating only on switching time. This approach has

been proposed for linear problems, thus it is extended to nonlinear

problems. The second approach can solve linear singular problems with

singularities of order of one to n. In this approach an iterative pro-

cedure which iterates on switching time and initial costates is used.

This method can directly solve singular differential game problems.

3.1 Numerical Techniques

In totally singular problems, since there is no discontinuity of

the control and junction pointssolutions to the set of TPBVP obtained

fron the necessary conditions for the saddle point may be obtained by

some of the numerical techniques in the literature. In partially sing-

ular problems special considerations should be taken for the junction

conditions and discontinuity of the control. So far, there has not

been found a general sufficient condition for optimality Cc the par-

tially singular control. If there exists a single solution to the

problem satisfaction of the necessary conditions is enough for the

optimality. But if there are a finite number of solutions, some con-

parison should be made in order to find the optimal one( )  In the

proposed technique we estimate the sequence of singular and non-

singular controls in time intervals of the game. In the simplest case

we consider only one junction point. For this case a finite number of

possible sequences may occur. We consider two major different cases.
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Case 1. Game starts with a non-singular arc and at some time t,

switches to a singular arc and terminates on the singular arc at time

tf.

Case 2. Game starts with a control on one bound and then at some time

* ta the control itches to the other bound which is the bang bang

case. For dealing with junction points, it is enough to consider

these two cases and other cases are basically the same, but more

tedious when the number of switchings are increased.

In Case 1 since control u is bounded, discontinuity of u will

not cause discontinuity in the states and costates, however, it may

create some corner points at the Junction of singular and non-singular

arcs. So, the following relationships hold at each Junction point

XCt7) - +)  (3.1-2)
+

I+

where ti and to respectively represent time Just before and time

Just after the switching time ts. Figures (3.1-a') - (3.1-d) are a

possible scheme of controls, states and costates for a differential

game.

The foflowing'relationship holds at any point along

dn- (xt)vt) t) - 0

dt -1 tC)t)-o t t 3z3
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Schematic Figures
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Figre 3.1-. CState Trajectory of the Gam.
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the singular arc inclding t. Continuity condition (3.1-1) and

(3.1-2) together with (3.1-3) Implies that (3.1-3) hold at t on the

non-singular arc and provides n conditions at the junction point. So

a set of mltipoint boundary value problems is formed. Also we define

a Terminal Error Vector Fanction TEF as

TE- () - Sx(tf) (3.1-4)

which is a boundary condition. Since the time ts is unknown we

establish a procedure that iterates on ts and drives euclidean norm

n(t8 ) - JITEFII to zero, so that all the necessary and boundary condi-

tions for optimality are satisfied. In otder to derive the iterative

relationship for the switching time ta we parturb switching time

around a nruinal value t'. So, the final states and costates are pAr-

turbed as much as -'.(tf) and 6,(tf). Figure (3.2-a,b) shows the

change of final state and costate due to the change of switching time.

If

TEP1  ,. (tf) - sxi(tf) (3.1-5)

where x-(tf) and ), (tf) are the final state and costate obtained by

the choice of t s. So

TEl TEF~ +~ AE (tf ) +. I%(t ) - S11 (tf) - vit (tf)

(3.1-6)

We express. x(tf) and AX(tf) as a function of &ts where

it to - ts (3.1-7)

55



II

*Figue 3.2-. CState Trajectory and Neighboring Comparison Curve.
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For this prpose we solve (2.6-44) and (2.6-45) for the interval
t •[toots]

(t - [t(, [(to)

tt 0)] + I1(t )] (31-8)

[A(t - - 3 4 T [#(t ,to)] (3.1-9)

t(t 9 t o ) - 1 (3.1-10)

and

It). d O(± ,9) tBK (3.1-3.)

to0

solving (2.6-46) and (2.6-417) we get

() f =)] [ x(t5 ) ] (3.1-12)

where

[ A ,.,'4

(t f(-tf) - 3 (3.1-14)

According to (3.1-7) the following relationships hold
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x(t,) = x(t1 ) + 6z(t.)

= a(t)) + 1(ts )

T(t5) - 1(tsl) +A1 (to) (3.1.15)

*(t tt) , + At s )

where $J(ta), A4(ts) and A*(ta) can be expressed as a function of

Ata.

Frum (3.1-8) and (3.1-12) and (3.1-15) the following relationship

can be obtained.

Ax(ts)]X(tx) +A(t X(to) + (t

A X(t8 ) [ ](to) 0 ]

(3.1-17)

and

FA(t) fF*tAx(t) ~l-

Expressing (t ), A*(t) Aq(t ) and A(t 0) as functions of

At to the first order, we can derive Ax(tf) and Ax(tf) in terms

of At5. By substitution frmn (3.1-18) and (3.1-19) in (3.1-6) we can
TEF

obtain TEP an4 - at each ts . Therefore we can obtain several
s

iterative relationships to derive TEF to zero.
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The switching time can be obtained as

t + - t + h (ti)] ri (t, (3.1-17)
s 5 ot 5

Or in the least square sense

i+ ti + !Eitti t + at - i Ii (3.1-18)

where

LL a t-.; =-t. at- (3.1-19)
is

The details of the derivation are given in Appnedix B. To see how

this technique is accomplished, we outline the algorithm as it would

be executed if a digital computer were used.

Algorithm

Step i. Select a nominal s-itching time t , 'CO < ti < tf assuming

this choice is .sufficiently close to the opimal switching time ts.

Let the iteration index i be zero.

Step 2. Integrate the state and costate equations (2.6-44) and (2.6-45)

from t0  to t t' as a set of TPWP with boundary conditions (2.6-3)

and (3.1-3) and store x(t') and (t).

Step 3. Integrate the state of costate equIations (2.6-46) and (2.6-47)

from t i to tf a5 set of initial value problems with initial condition
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,,r.. .

;';:

.,; , xz(t) and (

Step 4. If

(3.1-20)

where y is preselected positive constant the problem is solved,

K: otherwise capiyte t i 1  from (3.1-17) and repeat the procedure from

Step 2 to Step 4.

3.2 Extension of the Numerical Algorithm to a Class of Non-Linear Games

Let the set of state and costate equations obtained from the appli-

cation of the necessary condition for the saddle point be

i(t) - f(x,t) (3.2-1)

{~~)- g(zxxt) (3.2-2)

for non-singular interval [t0 9,t~J and for singular interval (t 't I

be

, X. x,x,t) (3.2-3)

X(to) - x0  given (3.2-5)

""- h(x(tf))

al,.

S ..- .S.. 0
60



Define

h(,(t f))

T x(tf)--~- 327

For an iterative relationship we try to obtain TEF and -ts
|i

for each value of switching time ti .

From Figures (3.3-ab) we get{ 6(t;) - .tx(t) - (t;YAts (3.2-8)

8%~.(t;) -A(ts) - x(tY)At5  (3.2-9)

6x(t+) A (t + i(t, t (3.2-10)

6%(t-) A(t) + k~(t )At 8  (3.2-11)

Linearizing (3.2-1) - (3.2-4) around a trajectory obtained due to

ithe choice of t we will have

6; + )f8x. (3.2-12){6 +X 8 14 (3.2-13)

x + 6 x (3.2-14)

a- 8%(3.2-15)

ax(tO ) - 0 (3.2-16)
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Figure 3.3-b. Costate Trajectory and Neighboring Cmpsison Curve
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If the switching time is perturbed as much as At t -ti, then,

TEP - T] ': + ATEF (3.2-17)

*" where PF is the increment of TEF due to the incrament. We

Ican express the following relationship

TEl a Xi(th) + X(t 6z(t ) + H.O.T. (3.2-18)

By solving (3.2-12) - (3.2-14) and ubstituting in (3.2-18) for

6x(tf) and 8%(tf) in terms of At8  we find ATEF as a function of

-At so we will be able to find -E

The iterative formala for the switching time is the same as

(3.1-17) or (3.1-18) and the derivation is given in Appendix B.

The procedure is carried out on a digital computer a ila to the

TEFlinear case, the only difference is the computat ion of - s' which is

done through linearization according to the Appendix B.

In the case that there are two switching points the sequence of

singular and non-singular controls are estimated. For example, assume

the game starts with a non-singular arc and at time t switches to

a singular arc and at time ts2 switches to a non-singular arc and the

game terminates on the non-singular arc. tl and t an a guessed

and it is tried to drive TEF to zero with respect to t and t

which are independent of each other.

3.3 Second Approach

In some high dimensional problems the number of junction conditions
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may be m < n. In such a case the first approach should be modified

aud Termimal Error Function should be driven to zero by iterating on

the switching times and n-m initial costates, i.e., Ii(t0)9

= 1,2,...,n-e. For the class of problems with linear state equations

TEF is expressed as a function of initial costates %(to ) and

switching time. In this approach for a coputed switching time t,

initial costates xi(t O) are also cmpIated to minimize Ai(%(t O) ,ti)

IIEFi at the Ph iteration, and then at each ta the gradient of

min()IITEFP1 with respect to t s  is ob tained. In order to satisfy

the junction conditions, at each step of minimization m constraints

on initial costates is considered. By finding the mini== value of i

and its gradient with respect to t at bach ti we will be able to

find a new ti. which yields a smaller It, i.e., (by Newton method).

This procedure is continued until IITE'II -0, in which case the

problem is solved.

The value of the error at final time for each iteration as a

function of witching time and initial costates is obtained as

where P(t'), T( ti) and f( tt) are functions of switching time given

in Appendix C. Also m conditions at the junction point yields m

constraint relatUnsZps on the cnponents of X(t O) as

W2t~~(0)-T(t~) - W (ti)x(t0 ) (3-3-2)

614
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where W (t1  and W(S are amx a matrices and T(i.) isE an m

vector specified in Appendix C.

The following iterative relationship may be used to find the

optimal switching time

ti+l -i[ ]l

i+1 mn 1'](3.3-3)
S to %(t )

The derivation of hi is- shown in Appendix C.
at

The following algorithm is the outline of the steps required to

carry out this approach.

Algorithm

Step 1. Select a nominal switching time t0 < t i < t sufficiently

close to the optimal switching time set i - 0.

Step 2. Compute min i  from (3.3-1) and (3.3-2).
%h(to) (( 0 ), 5  frm(33

Matrices R(t i Z(t it p(tl), W(ti), W( and T(J )  should be• (s. P~s. ~s, w2(ts) an

computed a priori.

Step 3. If

mnkto .ti) 'y

where y is a preselected positive scalar number, the problem is

solved, otherwise go to Step 4.

.i+ roil
Step 4,. Compute Y [ da\(tO) (ts)3i'and fid t from

a 0
(3.3-3) go to Step 2, repeat the procedure.
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.I3-. Features of the Numerical Algoritins

The important features of the algorithms are &A follows:

1. Initial Ouess. To begin the procedure a guess for initial

switching time should be made. This guess is usually based on the

physical nature of the problem.

2. Storage Requirement. For linear problems only initial state

and termna conditions and the values of states and costates at Junc-

tion points should be stored. For non-linear cases each trajectory

obtained at each iteration is stored as a linearizing trajectory for

the next iteration.

3. Convergence. Since the method has the characteristic of the

Newton method, if ts is sufficiently close to the optimal ts the

method will generally converge quite rapidly. However, if the initial

guess is very poor, the method may not converge at all.

4. C nputations Required. In the first approach at each itera-

tion we need to invert an n X n matrix and solve a set of TPBVP and

in the second approach we have to solve a non-linear programmLing prob-

lem at each iteration.

5. Stopping Criterion. In problems with fixed final states the

procedure is exactly the same as free final state. In this case the

terminal error function will be defined as

T -az(t~, -

where xf is a given vector for final states and the procedure
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trminates if 10T211'~'

emark. The second approach can directly handle problems in which

the sequence of .control is bang bang.

3.5 Numerical Example.

Consider the class of generalized prusut-evasion problems

(2.6-1) - (2.6-) where S -0, Q [ 0 I .100, A. 0o B
c0 1' 0 0 1

C 0 1, to W o, tf - 3.17, X(o) = [O.9 84 ] and [= .l.Assuming

both players have perfect information and measurements of the output and

parameters of the system and

y(t) = z(t) (3.5-1)

for this problem, Condition

3 .1 7 t AR- T / 2IR- / 1 1 2 1 t -< 1

t( S0 1 A(t-T PT1~

(3.5-2)

and all other required conditions for the existence and uniqueness of

the saddle point are satisfied. For given matrices and tf - 3.17 any

R z 21.5 satisfies (3.5-2).

Table (3.1) shows the solution to the matrix Ricatti equation

(2.6-52) which is finite in 0 s t ' 3.17 is an alternative to

(3.5-2) for the uniqueness and the existence of the saddle point. For

the necessary conditions." Define Hamiltonian

H 1 2 +1 2 100 2X +X2 (35)
2m xl T ' 2 -. rV +> .1x2 + 2 u+ 353
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t f t P1  P2  P -P
0.0 0.0 0.0 0.0 0000.38500 0.12500 0:00701 090676: 0.135660.85000 0.85000 00312S 0.0225 0.255260.37500 0.37500 0.07034 0.07036 0.39277

0.50002ftcoo 40asca 0.3506s 4054214*2500 o.68505 0.19552 0.39152 0.707380.75000 0.75022 0.28171 0.211 0.6925211.000CC 1.00050 0.50162 0.S0162 3.338793.85000 1.85153 0.76573 0.765?1 3.914513.50000 3.50364 1.13551 1.13511 8oG15031.75000 1.75636 1.55371 1.55371 3.590798.00000 8.03644 2.04435 8.04435 4.769008.85000 8.87996 8.61340 2eG13460 6e27625800c0 3.55159 3.*99? 3.26997 8.122328.7500* 863683 4.01727 4.0872? 1@41ed3.OOOCO" 3.83460 4.90463 4.90463 13.2312530CC 3.45762 5.93045 5.93045 14.742363.50000 3%61443 7%14721 701478t 81.145693.74000 4,081926 6.082019 8068019 86.7517
-. 3.697500 -4.4659 9.46308 96306s 30.14763

4.00300 4.69565 10.45359 10.P4535; 34.848s44.18600 4.97262 13.56613 11.15411 36.545964.856000 5.8226 18.62333 12s68333 43.652634.137500 5.43671 14.89998 34.89996 50.316004.50000 4.04666 1004901 14.0*902 57.460C4.68500 4.5369 14016179 146.1179 "e."764.4670 6408130 14*39S03 19.39503 73.899354.75000 7.33570 80.7740* 80.77602 76.436154.63850 7.40026 88.33467 38.33467 65.3567475C0 7068741 24430960 84.1096e 93.899614.93750 6.34407 84. 1175 86.16175 1020479665.00000 6.67397 86.5S893 286.52693 113.211436.0450 9.49412 31.33450 31.33450 385.9868?5.18500 10.83454 34.70000 34.70000 141.232395.15685 10.6582 34646986 36.64986 150.116145.1675 1.614106 36.61612 36.61682 140.015145.21675 11.67861 41.84823 41.24283 173.1044C5.85000 18.87066 43.97531 43.97531 183.41608ses5.8125 18.94692 47.07959 47.01159 197.64625533850 13.7521 40.43733 50.43733 214.173066.34375 14.48899 54.75710 54.T770 833.09937*5.37500 35.67190 59.565:3 59.56113 855.301305.39063 14.8497* 68.18469 48.3241; 1167.SCfl95.40625 14.98158 6.32309 4533309 8611165,48266 17.63151 46.61643 6.61641 896.167705.43750 1864866 78.81750 73.86756 33.654305.45333 39.30490 74.39770 74.89770 338.87539
-5.4875 80.8369 80.60933 80.380933 353.07.65.46436 81 .35356 05.5604; &S.sGoe; 374.45166.50000 88.6896 91.42873 93.G3873 408*95758

Table 3.1. !Iatrliz Ricatti, Solution for R 2:130
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. -100 + -0 (3.5-4)
rv 2

V. 2 (3.5-5)

Costate equa.tions are

4 -xiz (3.5-6){ 2 -K (3.5-7)

+1 i < 0 (3.5-8)

Un f X2 > 0 (35-9)

U - if X2 m-0

along the singular arc the stregnthened GIC condition

d2  )H - -1 < 0 (3.5-10)

is satisfied, and transversality conditions are

%1(3-17) 0 (3.5-11)

%2(3.17). 0 (3.5-12)

In this example a sequence of control unm -1 for 0 : t < ts

and u 9 -zI for ts < t < 3.17 with one switching from non-si:gula,
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control to singular control satisfied all the necessary and trans-

versality conditions for the optimality. To integrate the set of state

and costate equations (2.6-44) - (2.6-47) with boundary conditions

(2.6-3), (2.6-29), (2.6-37) and (2.6-38), by the first approach we

used a computer program in SSP subroutine LBVP for TPBVP and subroutine

HPCL for initial value problems. For the initial guess ts .8

after six iterations the problem stopped with

6 x 10 -6 < 10"-5  (3.5-13)

the optimal switching time,

ts3 =15o46 = 1.2 (3.5-14)

and the performance index,

J - .60243 (3•5-15)

Table 3.2 shows iterative and computer results for this problem.

Tables 3.3-&,b) showr computer printait of the state and costate tra-

jectories on singular and non-singular intervals. Figures 3.4-3.7

illustrate the behavior of the controls and trajectories. The cam-

putational time at each iteration with IB4 370 was approximately

.54 second.

70



Iteration No. Switching Time ii Terminal Error

i tS

1 .8 56.058021 9.137982

2 .973001 23.236232 2.370764

3 1.085023 9.150887 .515614

14 1.1o13142 3.262189 .987125

5 1.188061 .667985 .005082

h6 1.1950]46 6 x o-

Table 3.2. Com tation of Switching Time t

71



-7 r -

Saddle Point Solution

Ti z A.2

-0.oot"C C*59847 fe.G070 6  I.45739 1926175
O.:eooo, 0.52 .56'339467 1.0433?
L.00 0.70031 O.4c9tS 1.326"? '0.S6135
9&..0300'!C 0.736'!& Ce30993 10254915 e92

0.a00 ~ !1.76 2 -0 021055 1.17994 .~4
Ce00f07783? 0.3113 1010290 C0.4824

C*0000C 0.78470 '3.012.' 1*02469 C.30573
-- ba70CC C*78',!5 -0.03635 C.9463? V.21103

e.Seeoc ee76662 -04136819 C.6893 C%13412'
0.1T0C O7420: -0.268o 7 '3.79333 0.'17467

0.9500C 0.72716 -0.33804 0.75662 0.05172
J a coact 0.709:1 -0.30802 Do?2'371 C.0329*
. *05!(0 p.eSR36 -C.436'S 0 .683S76 0.'1P44
10000 0.665?! -00488c! 1.65191 COCCOIS

3.15C30 0.63955 -0,.53600. C*61928 0.00203
22O2 0.61141 -CessaC easuac G

Table 3.3-a. Numerical Results for N n-Spgalar Subarc

Time X, 2  ki %

1.250CC 0.5827b -0.55815 C.55815 8.1
13c~c0! eeS5557 -C.5297C O.5297? 001
3SI0: 0.52977 -0.a5025 7 0.50257 0.0

0.--4ACC 150529 -0.o47670 . 0.4767: C0a'
3.450CC 0.48208 -0*45P02 0.45P22.0
3.50000 0.46CI7 -e.42847 0.42847 0.1

0.41446 -0.384S3 0.38453C.
r-, -- 4. 7C00 .383:4 -0.34444 . .34444 Cal:

* I8(00co 0.35045 -0.3078: C.307800.
090t 0.32138 -C.27423 0.27423 0.:

Rec.0000 0.2955! -e.24341 0.243*3 0.0
-- U &not .0.27261 ... po.2303 Ae. S02103 .0.

2.2000C 0.252*4 -CO18800 0.1888T e.^
2.00%~be Co?3470 -0.10446 f0.1644. C .1

2 4te, 0.21940 -0.34176 0.14176 0. 1..---. 50C -. 2639 vC.12049 - .. 0. 12 6 0.2
20610C., 0.19535 -0.30042 e.201 62 .
2970"0t! 0.18627 -Co.0635 0.08135 C0. 1
a 0 boo#, 0 4).27905 -0.06310 0.e0631I! 0

- . .. ~ance00 .0.17363 .- 0.04SS40 - .... 454a 0.0
9poT 0.16094 -0.02832 0.e283? f

3.C9901 0.1679S -00244 0.C1144 tf
3*19990 e&16765 0.00S33 -OC533 C..

Table 3.3-b. Nua~merica~l Results for Singular Subarc.
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CHAPTER J

CWSED..LOOP STRATEGY DEPIENDENT SC IJTI

AND APPLCATIC I OF I RVERSE SYSTEMS IN SINGUIAR PROBIMS

As was mentioned before, in differential game problems closed-

. loop solutions are more desirable than open. loop solutions.

In a closed loop solution each player's strategy is based upon

information about the current state of his opponent and assumes that

the opponent plays optimally. In the case where one player plays non-

optimally, the opponent might be able to perform even better than the

closed loop solution if he can determine the nonoptimal strategy of

the other player. In this case the known strategy of the opponent can

be assumed as an external input to the system and the game problem is

converted to a one-sided optimal control problem. It is obvious that

the performance that can be achieved in such a way would be better than

the performance achievable either with open loop or closed loop

strategies. The following static example will illustrate how the

deviation of one player in a zero-sum game from the saddle point solu-

tion may affect the payoff of the game and how the opponent can

achieve different performances.

Consider the zero sum game

J(u,v) u2 -v + uv (1.l-1)
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where u is minimizing J and v is maximizing it.

* This problem has a saddle point solution defined by the u and

v satisfying

= o, o (l+i.2)

The saddle point solution is

u O, v * 0

and the value of the game is

J(u ,V ) = 0 (i.1-5)

Now, assume v chooses a strategy other than the saddle point

v - 0, e.g. v- 1 and u follows the same saddle point strategy

u w 0. Then the value of the game will be

J(u*, ) - - 416

We note that u has achieved a better performance than the saddle

point case. But u can achieve even a better performance than (4.1-6)

based on the information that '. 1. In this case it is enough to
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minimize (I.1-7)

3(Up,;) u2 + u 3.

Thus

. = + 1 0.8)

so that

U

is optimm and

- -1.25 <-1 (.-10)

Consequently u has performed better in comparison with the case

that he used his saddle point strategy.

This example shows even a reasonable approximate knowledge of v's

strategy, can help u to do bet.er than his saddle point strategy.

For example if - 1 and u has an approximate estimate of f,

e.g., v .9, then, going throagh the steps before to determine the

opt 4nal u,

J(Uf) u + .9u - .81 (4.il-)

- 2= + .9 (1..-4)
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So, u is still better off following this control rather that

his saddle point strategy.

Remark. In general, sometimes a player may not be able to achieve

better than his saddle point. For example consider the case

lul < (

where u is minimizing and v is maximizing T. The saddle point

solution is

U v (14..1-17)., u =-1 v 0 .- T

If v deviates from the saddle point strategy the best strategy

for u is to play the saddle point strategy u = -1, for any deviation

of v. This case may occur for dynamic problems in the case that con-

trol u(t) is always on one boundary of his control region. But in

cases of bang bang and totally and partially singular u(t) deviations

of v(t) can effect switching time and some change in singular control

arc and even it may change the whole sequence of singular and non-

.. singular u(t).

In pursuit-evasion game problems some methods have been suggested

to determine the opponent"S strategy. These approaches may be
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(°7)
categorized as estimation techniques or inverse system tech-

(56),OWniques ( ) . In the past singularities have been excluded fron

these problems. In this chapter we will utilize the concept of inverse

systems (assuming its existence) to determine the opponent's control

through a state or output measurement. Thus, together with the pro-

posed techniques of Chapter 3, enkbles us to generate an approximate

closed loop strategy dependent solution. In the next section we will

discuss the concept of inverse systems, and their existence, and then

we will show how by such a system to determine the strategy of the

opponent.

4.2 Inverse System

4i.l.a Basic Definition. Let U and 4 be sets. A mapping %:U-

is said to be invertible if there exists a mapping 9: 4 - U such that

-. and 9 are identity mappings on the sets U and 4 respectively.

In this case 9 is said to be an inverse of 9. Since such an inverse

if it exists, is unique, we will denote the inverse of 4 by s-'.

The following definition is due to Zadeh and Dessoer in

Reference (3).

' .l.b. Formal Definition. Let 8 and 3 be characterized by input-

output-state relations of the form

4 y = (x;u) x S z (4.2-1)

J -(z;v) z- e (4.2-22)
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where u and v are inputs to S and S respectively, and y and

w represent the corresponding outputs. x and z are corresponding

states of each system (the output function space of S is assumed to

be the input function space of A and conversely). Then g is called

inverse to 9 or S is c alled inverse to 9 if and only if to every

* state x of 9 there exists a state z of 9 such that

J(z X; I(z;u)) -UU (4I.2-3)

and conversely to every state z of 9 there corresponds a state xZ

of S such that

I(x z; J(z,v)) - v Yv (4.2-4)

If 9 is inverse to 9 then S is denoted by - and 9 de-

noted by S-1. Correspondingly, the state zx  is denoted by x "

will be said to be invertible if it has an inverse.

From this definition it follows that if (4.2-3) and (4.2-4) are

satisfied with states x,zx, and zx z respectively, then they are

also satisfied with the states x ,z and zx ,X.

For this study we will include theorems, without proof, and in the

following we also include several pertinent definitions. For more

detailed study of this subject references (3) and (10) are recommended.

Theorem 1.. A mapping S: U - 1 is invertible if and only if it is

one-to-one and onto.
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Lenm 4.1.. If a mapping 9: U- 1 is invertible then -1  is

invertible and (9-1 ) -1

Definition 4.2. A mapping 9 : U - 1 is said to be

a) Pre-1Inrtible or left invertible if a mapping S : R8) U exists

such that $ 1 w.u, where R(g) denotes the range of S. In such a

case g is called a left or Pst-tmertible 9 and denoted by 9

b) Postinvertible or right Invertible if a mapping I : l U exists

such that g= . In such a case 9 is called a right or post-

inverse of $ and denoted by Si

Theorem 4.2. If 9 : U -. is both left and right invertible then S

is Invertible and 9- M& -1~

In the remainder of this chapter we will consider only linear

dynamical systems indicated by the notation

S(A,B,C,D) (4.2-5)

This notation specifies the following set of state and outpat

equations.

(t) - A(t) + Bu(t) (4.2-6)

y(t) - Cx(t) + Du(t) (4.2-7)

where x e Rn , u m, yCR I are the state inplt and output vectors

respectively. The matrices A, B, C and D are real, in general time
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varying, continuous and of compatible sizes.* The Initial counditions

are assumed to be zero.

We now address ourselves to the issue of the existence of inverse

systesm for (4i.2-5), and the construction of such a system if indeed

they do exist.* Before we discuss conditions for the existence of such

I

inverse systems and the algorithm to construct them, we briefly review

the applications and the literature of this subject.

The concept of inverse systems has found applications in numerous

problems of engineering. Information recovery, in coding theory is

one of the areas in which inverse systems are used. A linear time

Invariant dynamical system can work as an encoder for a special type

of code and the post inverse of the system is used as a decoder.

A post inverse system has been used in filtering and estimation

theory in the presence of colored noise. It is used to whiten the

colored noise which is easier to analyze.

In stochastic differential game problems the pursuer typically

attempts to estimate the state of the evader's system, and then employs

an inverse system to determine the evader's input.
(58 )

In the deterministic differential games inverse systems have been

used to determine the opponent's strategies from the perfect measurement

of the state of the system in non-singular problems.
( 8)

Other applications include decoupling of multivariable systems,

network synthesis, networl realization of passive impedences, and two

point boundary value problems.

In the present work we apply this concept to develop a solution to

deterministic linear differential game with singularities.
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Most research which has been done in inverse systems is concerned

with time invariant systems. Some authors have proposed algorithms

which may be used for special classes of differential game problems.

Our need is for some criteria for invertibility of the system and also

an efficient algorithm for constructing theO-nverse systed.

Pata ( 5 9 ) (1973) has obtained a sufficient condition for invert-

ibility of a special class of time invariant systems in which m 4 4.

This criterion slmply tests the rank of the product of two matrices.

One of the most recent works for time invariant systems in the

Scase of £ m is the work of Sinwat and Falisie ( 50 ) (1976). They

have proposed an algorithm which is based on the factorization of the

transfer matrix of the system. The criterion for invertibility here,

requires the formation of the transfer matrix and determination of its

rank. Pull rank of the transfer matrix is a necessary and sufficient

condition for the applicability of their algorithm.

(51)Silverman introduced a finite sequential algorithm for time

invariant systems and later on he extended the algorithm to the time

varying systems. Also a sequential test of existence is incorporated

in the algorithm.

4.2-1 Inversion of Linear Time Invariant Systems

With regard to the basic definition of the inverse system let

RES M be a ring of polynomial matrices. The linear time invariant

system (4.2-6) and (4.2-7) whose transfer matrix function is

G(S) t RES] A and which is assumed to have full rank, is said to be
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left invertible if I > m and there exists a system with transfer

function matrix G(S) e [S such' that G(S)G(S) - I n o is

called left inverse of G(S). Similarly the system is said to be

right invertible if A < m and there exists a GR(S) £ such

that G(S)G(S)= If. Ge(S) is called the right inverse of G(S).

When I a m the right and left inverses are identical.

The following theorems which have been presented in references

(59) and (50) give some conditions for invertibility of linear time

invariant systems.

Theorem 4.3. A sufficient cu,.ition for invertibility of the linear

time invariant systems (A,B,C) is that - rah.k(CB) - mn( £,m).

Theorem 4.4. A necessary and sufficient condition for invertibility

of the linear, time invariant system (A,B,CD) is that G(S) has a

full rank.

4.2.2 Inversion of Linear Time Varying Systems - Regular Systems

Roughly speaking a regular system is a system in which D(t) has

a constant rank.

Given a set of regular linear time varying system

f x(t) - A(t)x(t) + B(t)u(t) (4.2-8)

• y(t) - C(t)x(t) + D(t)u(t) (4.2-9)

for each given initial condition x(t0) = x0 , Equations (4.2-8) and

(4.2-9) define a mapping H:U ,. The following theorem applies
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to this situation.

Theorem 41.3. H XO: U - ~has a continuous left inverse if and only if

do rankD(t) m for Yt. Inthis case If has aunique left
0" IC

inverse denoted by So the unique left inverse to the systemL X
(4.2-8) and (4.2-9) is given by

T T
" t = [A(t)-B(t) (t)C(tlx(t)+ B(t)D (t)y(t)

X(t 0 ) = X0 (4.2-.0)

H'
L XT

u(t) DT(t)y(t) - T(t)C(t)x(t) (4.2-32)

where Dt"  (DT(t)D(t))' D T(t) and m < £.

Theorem 4.4. H : U - has at least one continuous right inverse

if and only if d = rank D(t) = I for V t, and it is denoted by

-3'

If do = rankD(t) 4 A for some t e t0,tfl. Then H O does

not have a right inverse (contInuous or not).

Theorem 1.5. H : U " has a unique continuous inverse if and only

10
if d= rankD(t) m = for wVt. The inverse of the system

(1.2-8) and (4.2-9) in the case that D(t) is a square matrix with

4 fufl constant rank is expressed as:
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i(t) [A(t)-B(t)D-l(t)C(t)lx(t) + B(t)D' (t)y(t)

x(t 0 ) =x (4.2-13)

:::.u(t) D D-(t)y(t) - '(t)C(t)x(t) (4.2-14)

In cases above, D(tV had full and constant rank m or Y. Now

we consider cases that m x m matrix D(t) has constant rank but

do <m or the case where I x m matrix D(t) has d0 = rankD(t)

4.2.3 Inversion Algorithm for Construction of the Inverse System

The basis of the Silverman's algorithm(5l) exploits the fofllirng

theorems by Dolezal.

If D(t) is a matrix with a constant rank dO < min(m,A) on

(t" OtfJ and differentiable then there exists a square non-singular

m'trix S0 (t) such that

.- .." -s ( t ) D ( t ) - -------5

.<., 0

where S (t) is mx m, < I and 5,(t) has d0 rows and

rank B7(t) mdo on (t0,tf

Defining a system S0 as

;(t) A (t)x(t) + B(t)u(t) (4.2-16)-a.

- {yo(t) Co(t)x(t) + DO(t)u(t) (4.2-17)
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wheze

Y (t) s (t)y(t) " [ C (t) °S(t)C(t) " [ (t)

y: : o(t )

The bar and the tilde represent respectively the first do r ws

and the last m- o  rows of the matrices CO(t) and yO(t).

Now define a matrix differential operator 0

where Id 0  is an identity matrix with order %. Then

0d

Mo0yo~)= 0(t) Le'o JL (t)A(t). (t~J +L'o(t)B(t)J

MO ------------ &-(4I.2-192)

Consider

ran 1 (I.-1

0 0

1j L(t)B(t)'

if d 1  m, then the inverse if as before. If d < m then we

find S1(t) uia8h that
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a'p

, . ( 1 ' C1 t)
Dt) c [t) ----- (4.2-22)

and the procedure is continued, then by induction we get

it) + A(t)x(t) + B~t)u(t) (4.2.2)

I k(t )  Ck(t)x(t) +]k(t)u(t) (i.2-24)

vihere

Yk4t Fk~ D k(t)1
Ykt£ -~) (4e.2-25)

DC(t)

0(t) t)

and (t) has dkrows and r()- 1 tAt)*c~t a
rows. if <m then

, •

Mk (1.2-26)

and
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- .kk; e(,,

': (4.2-27)

where

C.: k+. (t) ,, kC'l:)A(tl) - &k(tl) (41.2-28)

F k(t) 1Now if d~.~ if dk. < mak[ and constant for

t e [t 1 t09 . Then an m Xm non-singular differentiable Sk+ (t) can

be found such that:

D k+. ) k+.()| k(t Fk(t) (4.2-29)
dt)B(t) 0

where D k+() has dkl rws and rank D k+(t) d k+1  and then the

System 8 k+1  is defined as

r i(t) - A(t)x(t) + B(t)u(t) (4.2-30)

" k+,(t) - e+,(t)x(t) + D +l(t)u(t) (4.2-31)

where

Yk+l(t) " Sk+l(t)Mkyk(t) (41.2-32)
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and

Ck+(t) " Sk+1(t) ](tA(t) (4.2-33)

[~t)t) Ik+1 J)

Also 8k()has dk row and Ck1has a-klrows.

Suppose now that there exists an integer a such that DC, has

rank m. Then it is possible to get the inverse in the form

i(t) [A(t) - B(t)D&(t)c(t))z(t) + B(t)D(tIy (t) xto)=x

,.. " (4.2• -34)
i g-l:

u(t) - DT(t)y(t) -DaCt)C~t)z(t) (4.2-35)

where

1TT a
Da(t) (Da(t)D,(t))D'(t) and ya(t). M so..(t) = -i .i)y(t).

If I <im, then, Dt t) - D t)(D (t)D t)Y"1  and if £ - = the

inverse system is found as the form of (1.2-13) and (4.2-.4).

Now, a more precise definition of the regular system is the case

T Twhen matrices D(t) and [Fk(t) ,(t)B(t) ] have constant rank on

t C tOt f) for k - O,l,...,n-1.

So it is concluded that the regular system representation (14.2-8)

and (4.2-9) is invertible if there exists a positive integer a < n

such that da- mM A. In the case da m < I the system is call d

left invertible and in the case da < m it is called right
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invertible. References (54) and (48) show the necessity proof of the

above results.

4.3 Determination of Oppoent Strategy

In this section we use the results of previous sections to verify

the Invertibility of the system (2.6-2) and if it exists to construct

it and determine control v. We &ssume each player hes perfect infor-

mation about the output or the state of the system.

Let u , v and z e the saddle point solution of the differ-

- ential gam (2-.7-1) to (2.7-I4) then we have
,N

2 (t) a A(t)z*(t).+ B(t)U*(t) +C(t)V*(t) (i3l

y*(t) - z*(t) (4-.3-2)

(t 0 ) - z(43-3)

If Az(t) is the deviation of the saddle point state trajectory

cue to the deviation of the evader's control Av(t) and 4u(t) is the

change of pursuer's control in response to Av(t), we will have

v(t) = v*(t) + AV(t)

Uit) U*(t) + a (t) Y t [ t (4.-)

z(t) - *(t) + AX(t)

Y(t) At)+) A(t

PrOM (I.3-l) and (1 .3-4) We Set
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A(t) A(t)AX(t) + B(t)(u(t) + C(t)&V(t) (.3-5)

Ay(t) oz(t) (4.3-6)

& -t 0 (14-3-7)

We assume the output measurement is taken by the pursuer period-

ically in a a-all time interval At tK - ti, i - O,,.e . Whe

the game starts running, the pursuer takes a measurement at t 1 t 0 +

At and conpares this value with the saddle point solution and notices

the difference 4(t 1 ) = (t) which is caused by nom-optImal playing

of the evader's strategy. Since at this time the pursuer knows his

rwn strategy

tu(t) - 0 at t - t= (4.3-6)

so at any time of the measurement

!',A (t) = ACt),Oz(t) + c(t)&i-(t) (4..3-7)

"X(t 0 ) 0 (14-3-8)

"- r(t:) - z(t) (4.-9)

Assuming invertibility criteria of the Section 4.2, i.e., Theorem

14.3 for the linear system (4.3-7) - (4o3-9) hold. Since there is per-

fect information, by measuring the output and by knowing the seadle

point at each time bm(t1) is ccnputale by the pursuer. Having a
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sufficient history of observation tim derivatives of L(z(t) can be

* campted at each tme by foward difference approximation. Hence

tsv(t1 ) is determined at each instant of measurement using (1.2-3)

and (1.2-35). So, at this time it is assumed that the evader continues

the gme with the saee deviation from the saddle point trajectory until

the end of the ge.

. v(t) V V(t) + &v(t) for Yt C [tot] (4.3-10)

Now in this tie interval v(t) is considered as an external

input to the system and a one-sided singular optimal control problem

vth initial condition

x(t ) (.) + at(t 1  (-.3-.)

.4

is solved by applying the proposed technique for singular problems.

The control u is obtained periodically at each time. Again at tim

t- tI + &t another measurement is taken and compared with the recent

updated trajectory and procedure is continued until the game is ter-

minated. By this technique a suboptimal solution can be obtained.

If the evader's deviation from the saddle point solution is

sufficientlqy s" then the pursuer' s sequence of singular and non-

singular control will be the sae. In this case the location of switch-

ing time and the value of singular control will be changed. If the

deviation is large enouh the sequence of singular and non-singular

controls will be changed.
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I non-1near Vroblems the system equations are linearized

around known reference trajectory (usual3, saddle point trajectory).

%: x~~ - f(4,u,v) (.-

(to) "- x('.3-15)

Assuming f(x,u,v) is continuous in x, u and v the linearized

equations are

:::.f + VU + (C.3Y-17)

az(tc) 0 0 (14.3-8)

where

~2- I' f-J and f 143-9

Taking measurement of the oput at soe time interval At t

- ti, ± - O,1,... and apprcainating

• 1 real - 1 ref

8V a -V :rf V t e(t 0 ,ty (4-3-20)

real ref

y Yreal - Yref
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similar to the linear case at each time of the measurement

au 0

therefore

p. f xz + f5 (3-2

,x(t 0 0 (4.3-23)

by M 8x (4.3-24)

Assuming the inverse to (.3-22) - (.3-24) exists the procedure will

be similar to linear case.

Note: This method requires relinearization and it is assumed that the

deviation is slight and sharp deviation does not occur frequently.

Although this does not restrict the method but practically reduces the

accuracy of the technique.

Anderson(40'9 l ) has proposed a near optimal method by taking

measurement of the states at equally time interval At and updating

the set of TPBVP obtained from the necessary conditions for the saddle

point. But since the solutions obtained by this procedure are based on

the assumption that both players play optimally the solution cannot

be as good as the case that one player knows the opponent strategy.

Jachinovitz( 7 ) used estimation techniques to determine the evader's

control through state measurement and achieved a better performance than

Anderson. But, his input estimation algorithm was very time consuming

so that It was impractical for on line purposes. By inverse system
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ji technique input determination is done very fast so it is convenient

for an line use.

)i.4 On Line Solution of the Example

We consider the numerical example in Section 3.5. Suppose the

evader due to the biased error in his control has same deviation from

the saddle point trajectory. Assume this deviation is Av - .1 suchI that v(t) = v (t) + .1 for 0 < t < 3.17 where v*(t) is his saddle

point solution. This control v(t) is not known to the pursuer unless

e- determines it by direct observation and measurement of the output or

state of the system. In this example we assume there are perfect

measurements and y(t) - X(t).

At time t a 0 the system starts running in real time. Some

measurements are taken at same small time intervals and compared with

the saddle point trajectories. Consider the system (4.3-7) - (4.3-9),

since rank [C] . 1 for this example, from Theorem 4.3 the system is

exists. So, the evader's input deviation Av(t) is found fra the

following relationship:

t&r(t) - (CTCY%1TA(t) -(CTC)- 1AAz (14.41)

Ay(t) - bx(t) (4..4-2)

In the following we find the difference between the saddle point

trajectory (starred quantities) and real trajectory.
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t, 0A *. .6m76
iw.598417 X2u

t. 0 - .59847 2 60706V - __z -• 7 x..oo

and A(.I) - 0.102. Taking another measurement at time t - 0.2 we

will get

t - .2 a .70009 x 2  .0916

t w .2 , w .70420 X2- .42056

*, Sot

ta.2 AX, .0011 AX 2 =.02040

t = .2 Lz ".2 10i "2" -"10

and Av(.2) -.. 2020. It is noticed that the computed deviation is .102

frcom the optimal open loop strategy. Therefore, using the external

control v(t) - v*(t) + .102 over .2 < t < 3.17 with the initial con-

dition z (.2)- .70120 and x2(.2) - .42956 a one-sided opt ral

control problem results. This problem was solved and the pursuer's

control was computed as
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I.,

um -1 for O<t<1.33h
U i Usingular for 1.33 < t < 3.17

where u singular xl(t) -v(t) = Xl(t) - .1

* .-Tables (4.1-&) and (4.1-b) show the computer results of the computa-

tions.

As long as measurements show that &v .1 we may consider this to

be the optimal solution.

L Now in order to show the advantage of the method we compare the

results of the following 3 cases.

Case 1. Two players play optimal open loop (saddle point strategies).

Case 2. The evader deviates from his saddle point strategy but the pur-

suer plays his optimal open loop strategy.

Case 3. The evader deviates fram his saddle point strategy and the

pursuer plays his optimal closed loop strategy.

The following tables show the results of the computation for these

cases.

Lv(t) ts I

0 1.2 .60243

Table (1.1). Case 1. Two players play optimal open loop (saddle
point).
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4 *t7. -7,

The computer prlr4 out of Case 1 is given in Table (3.2-a,b).

For the Case 2 the results are

+.1 1.2 -. 86687

-. 1 1.2 -. 81053

Table (4.2) Case 2. The evader deviates and pursuer plays his optimal
open loop.

The computer printout of this case for Av(t) = .1 is given in

Table (4 .4-a) and (4.4-b) and Figures (4.1-4.2) show the controls and

trajectories.

For the Case 3 the results are

aw(t) ts

+.1 1.33 -. 99045

-.1 1.09 -1.02390

Table (4.3) Case 3. The evader deviates and the pursuer uses his
optimal closed loop strategy dependent control.

The caputer printout of this case is given in Table (4.5-a,b) and

Figures (4.3-4.4) show the controls and trajectories.

As we notice from the example, for the small deviation of the

control Av(t) - .1 the sequence of the pursuer's control is the same

but the swtiching time is increased from 1.2 to 1.33. Also the
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value of singular control is slightly changed (Figure 4.3-a,b).

As the results in Tables (4.1) and (4.2) show in Case 2, the

pursuer will achieve a better performance than Case 1. The results

in Table (i.3) show that in Case 3 the pursuer can achieve even a

better performance than Case 2.

We can also consider the cases that the evader's deviation does

not remain constant, but changes at some times. Two cases. are con-

sidered. In the first case the evader deviates Av(t) - .1 for

o < t < .605 and then from time t .605 on plays saddle point

strategy until the game terminates.

In the second case Ava .1 for o < t < .605 and AV .05

for .605 < t < 3.17.

In the following, again we calculate the control deviation Av

by using the inverse system technique. For

For 0 < t < .605 we already cmputed &v and in this interval

Av was computed at the instant of time which was constant L(t) = .102.

At time t a .605 measurement was taken and comparison was made

* *. with the new saddle point reference trajectory. The results are

,. t -.605 x1 -.80297 x * .06794
Z, 2

t .605 .80297 x .0679

and in the next measurement we get
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Tim x3

ce ISI? 1 0067O5' e.47389
*'oet -op? -- - .7!0 4?936

c ""OA.?eA61 0.34CZ9
00.??? e2?'

- ~ .79?C "1617

o~e~ee .eeps -Coevzt

A. 078384 -:. 1971!
e~e , povq~-% .%8'93

I' ,"c 0 A97264e -2o3ybR?

Table Ml."I.) Numar1ca results for. Case 2. (Puarsuer uses s

I o0.'*:C6619? -1%433

- . -Io3eC" 0.4112??3ST

4*1300.050 -ft3264"
f.1?~ 0.56195? -0929301

- I.Sstof* CO56316 -0.5305
-.-- -T;6000c-' -, O0.55197 -. 04

1 0 6S('0 C .54242 -i*17974
I * 74c f! 0.S339! OIS4

- I750!T C.52699 -e.12m70
V.5210' -001C521
CO~S1o4 -L0e R a31
C.S121? -. S?:

-. IS -13.10 37.^ 31

201 000" l.50955 0.0037?
-- -2015000 Oo5I13^ 0.04337

O.51,386 0006162
2 .25S'!") 01% 747 4?i

- 2.4cae " .53331 e.13131
26 4SO? C OO4CI4 0.14793
2.49999 0.54609 '301636S
2.54999 0.55071 1.17953

-2 .V500 t.5660"3 0.19461
204999 0.5760 fC.2'e9ft
2669999 e.567co '.22444
2076999 0.596 002391S

-20,79999 0O.S1091 lr331
2.44999 0.62396 10.2675?
2.99990 003766 C02St4,
2.94909 S.65210 .93

- 2699999 Co01716 To3tS0'
3.0*.999 '!.6299 .2a
3.09099 0.09944 1*33SO9
3*14008'j 7.16S % '.3604e
361999" 0.7343E 00302ps

Table (4.4-b) Uimi rcal results for Case 2 C(iarmer uses u)
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Closed Loop Strategy Depundent Solutions

O.SS3141 0066699 1.60729 I.03

* C.03~? 061629 0.56746 I.4? .6

0.43000 .77738C.29177 1,62'0339
0.13542 1.41"35

--. 73OCC 0.6C46i -0neala1050 0260

0.630CO 0,77736 -0.22 0.2671 0.0659

1375I o -0V. 01362 .7P6

0*83001 0.71*06 -eetA380 ee'.%7 C273

S.-- .0'~07769 -0.22352 0,86713 C.1t73s
-030 r,790-0I1 t.*5 0017c"9

I 132CeP OAA3 -C,313625@4S~ .0

1.33C~'? .6562% -'1.*355e.63' .

-o3tt C'.616? -OO8s -0.S3SS C .

T*U z.32 2

104310^ C.56088 -0.12476 0.524 0.0
-04"C 0.53533 00'9r34 C.49734 C.0

1.56000 #40&PPZ -0.44621 .o44621 e
I.6300 0.46640 -0.42235 e.4223S

.7000.42652 -0.377731 e*37a CO!,
* -_.e-3C~ .33690 - -&O. 360, *

j*9 3 A0A G.3!912 -0.29944 C929044 0.0
0.~~o O33'93 -0.26496 0.126098 #

2.511000 0.30596 -0.23316 e.23316 0.e
-7 2 0 .?S41l -- oj a2,3ie9 -'.20369

0o3f .21653 -C.27625 C.1762% co"
0 11 .26661 -Gol15'57 1*1557 r"

o 5 3C 1%c %234%7 -Co12660 0.1264^
9.6130O - -- v213&8 ~.13E - l35
207300' 0.214P3 -e.08163 Go'SIA3 O

2.000 0.20753 -co0*2Ss 0006 1-,0

3 *1 3t? f0259"07 -0000n25 vo0cc25 to^
t.299 0 1 99E4 eovt959 -0.'119SO 0.'of

Table (1.5.b) iNuaerical results singular arc
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So,

t= .700 oc = .00022 -62 - .0077t .00 .a .021 = .523.0

-and f,,, (4.4-) A-(.7) = .052.

By taking another measurement at time t a .75 we have

t .750 * - .80236 - -.07661

t = .750 I - .80287 12 - -.06934

and the deviation in evader's control is &r(.75) - .05.

By this procedure av = .05 is obtained and if we continue taking

measurement and calculating Av, we will see Av = .05 for the rest

of the interval.

Tables (4.6) and (1.7) show the performance and switching times

for Case 2 and Case 3 when the evader changes his deviation during the
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uiv,,(t) tj

. .1 for 0 < t < .605
:'." 1.2 .27519

0 for .605 < t <3.17

.1 for o < t < .605
1.2 -. 05795

.o5 for .6M5 < < 3.17

Table (I.6) The evader deviates and the pursuer plays optimal
open loop

AV t s

S.1 > t < .605
1.277 .21389

o .605 < t < 3.17

.1 0 <t < .605
1.3 -. 09583

.05 .60M5 <t < 3.17

Table (,..7) The evader deviates and the pursuer plays optimal
closed loop strategy dependent

.

.4.

'A.
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CHIAPTER 5

DISCUSSIC, CCUCIUSICK AND RECa4MMATICK

5.r1 Discussion and Conclusion

This dissertation is mainly concerned with singularity in differ-

ential game problems with linear systems. A class of generalized

.4 pursuit-evasion games with linear state equations and bounds on the

control in which Hamiltonian is linear in pursuer' s control was intro-

duced. This problem for some values of initial conditions and final

times can have an optimal solution with singular interval. A sufficient

condition for the existence of a saddle point has been obtained. One

of the advantages of this condition is that an extremal value for each

one of the five parameters of the game, i.e., tf, S, R, Q and C can

be determined through the inequality (2.6-18) (provided that a1 other

four parameters are known) to guarantee the existence of a unique

saddle point.

Due to the constraint on the control, in general, there is no

analytical solution for this class of games. Rapid and efficient

numerical techniques are required to solve physical and practical

problems with singular arcs and controls with discontinuities. An

indirect numerical method was proposed here, that could generate an

Vaccurate and fast solution to a class of singular problems with linear

systems in which Terminal Error Function is only function of switching

times. In this method the sequence of singular and non-singular arcs

SIs estimated by physical or mathematical insight to the problem.
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Newton's method was used to iterate the T.E.F. on the switching

time. By linearization this technique was extended to solve the

same class of problems with non-linear systems. For a broader class

of problems with linear systems in which T.E.F. is a function of

both switching times and initial costates a second approach was

proposed. In this approach we iterate T.E.F. on both initial

costates and switching times. As was aonsidered in Chapter 3, the

singular problems with order of higher than one, and also problems

with bang bang controls could be solved through the second approach.

In singular problems with non-linear systems, since the junction

conditions are linearized to the first order, they may not be

satisfied precisely at the same time.

Because of accuracy and rapid convergence, the proposed

technique is superior to same other numerical techniques for singu-

lar optimal problems, e.g., Gradient Method, Epsilon Method or

Qusilinearization-Epsilon Method. Sometimes the approximate

solutions generated by some of these methods may provide information

to estimate the sequence of controls and switching times.

A numerical example was solved using Newton' s technique and

with an appropriate initial guess, for the switching time, the solu-

tion converged after six iterations.

By applying the closed-loop strategy dependent method some nu-

erical solutions were obtained for the same example. R= the numeric-

al results we considered that if the evader deviates from his optimal
A.

-. l
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4.

open loop strategy, the pursuer can perform better, provided he uses

closed-loop strategy dependent policy. For applying this kind of

strategy the existence and stability of the inverse system is required.

The opponent's strategy at each instant of time can be rapidly deter-

mined by inverse systems so that it is very appropriate for on-line

use. In this kid of closed loop solution, state or output measure-

ment should be taken periodically in order to generate an approximate

solution. If the measurement interval At gets smaller, a better and

more accurate solution is obtained. However, as At gets smaller the

colmtation time increases. Same considerations should be taken on the

choice of At so that co tational barrier is not encountered. This

interval should be smaller than the smallest time constant of the sys-

tem and also should be larger than conpmtation time at each period.

5.2 Reconendations

.4 The study of the literature in singular optimal control problems

shows that still much research needs to be done on the problems of

c"loatation of optimal singular control. The analysis of the junction

points should be studied further and some efforts are required for

locating the singular arcs and obtaining a sufficient condition for

partially singular problems.

A general and accurate method for solving non-linear problems with

all orders of singularities is not yet available.

The present work stimulates further development for computational

research in optimal singular control and differential game problems.

-3.12



The class of differential games in which singularity may occur

U__ for both pursuer's and evader's control is an interesting topic for

compatational research.

In the case above closed loop strategy dependent solution is

another aspect of the research which possibly encounters the difficulty

of discontinuities in controls.

The extension of the differential dynamic programming-Epsilon

method or Quasilinearization-Epsilon method to differential game

problems seems to be advantageous to overcome the difficalty of esti-

mating the sequence of controls and initial switching times.

The extension of the proposed techniques to free final time

problems with terminal manifolds is suggested for further research.
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APPRMDfl A

A.1 Proof of Theorem 2.1

Here we shall derive GIC necessary condition (-1) [d /dt~ Hu ]

>0 for the case when q 1.

Considering (2.1-1) to (2.1-3) from neighboring extremal theory

we will have

6i f8xz + f 5u (A.1-1)

5 -H x + 5B + HXu (A.1-2)

zx(t 0 ) 0 (A.1-3)

5%(tf) 
-hw ltt 

( )

From the second variation

2 1tf H[ H 1  bz 5 t

8JnXB 5 It f~ 2 81 H LBuj

(A.1-5)

subject to:

f•zmH + 8 Hu..u %. - (t) 0 (A.1-6)

Fram (A.1-7) it is obvious that
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j %+ 5%f +B + 5zTH )8xdt .0(A1)
to

Integrating the first term by parts we obtain

t ft

I f (.ZXT + )5Tf + aT + BxTHr )Bzldt + 1 [Sx~t~z -t' t0  [ uz 7to
" o

(A.1-9)

Fr. (A.1-1) and (A.1-A-)

.tf

r ~ - %1H,5 + J 5 t 7H1  + 5).lTH. )xdt +(A.1-U) Bxt

( (A.1-1)

2J (T +(A.1-13)

o.2.

T. f. 0. . . . . . . . .



Integrating (A.1-11) by parts together with (A.1-12) we get

Stf

2,J 2: f ux uu 1So

+ C O .T + XTH + &A)I u

where
tf

ft. , = u(t)dt (A.1-15)
to

By similar integration by parts of (A.1-1i) and substituting from

(A.1-12) and (A.1-13) we wll have

t, f

~~~2 jl~%70 F (T() . .T[) +4 b11(H )J t)dt

+ 1 (B H + 5%% ~+ eu )5l - 1 (5 1 T( + X

+ 0 (t)U 2J (A.I-i6)

+ u 0

tr
BU2(t) - f 8,u(t)dt (A.1-17)

0

We knw in a non-singlar problem H > 0 which is a conveity

condition, For the singul~ar case where H -H -0 we consider a

special variati6n as the following.

-a
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Sl

Sul, a.ve p I 1

- tt iinsu

of doable Ius 8za5 l.fl hc l h tz n(.-6

-I )II

"-. I I

involving 5z and 5% vanish. We take ) constant duing the

period of ft. from the Figure (A-1) it is obvious that



'N- 
7. 7. 7 -*

t

Ito (B )ad < o (A.1-18)

So, in order to assure 83 > 0 it is necessary that

0i)< (A.1-1.9)
U

This was for the case that u appears explicitly in the second

time derivative of H . Par cases that u appears in the higher order,

the procedure of the derivation of the necessary conditions conceptually

is the same (see References (20), (31)).

Proof of Theorem 2.2. Fran (2.1-18) and (2.1-19) by hypothesis we know

that a(t) and A(t) are continuous and have at least r continuous

derivatiYes at to.

Let e be asmall non-zero real number such that t B + e is a

point on the non-singular side of to and to - e is a point on the

singlarsidoft . Also, the limit of U( i)(t8+e n

u((t s . e) when e- 0 are u(i)(t and u i)(ts) respectively.

Define

.. (A.2-1)

If K = 2q + r then q)(k) will. be the lowest order derivative

* of ( hich is discontinuous at t s . We expand C(t + e) in Taylor

series about t5 , and we know cp 0 n the singular subarc.

The ftast n-zero term of the Taylor series contains the term

-(2)



aWe

(k) d (A.2-2)
dt

r

P(t 5 + e) - ar(t) + + O(e k

LWO
(A-2-3)

where Leibriz's formla for differentiation of & product has been used

to differentiate Pa.-

On the singular subarc we have

T a Pa8 0(A.2)

So, we win get

. dr rr(r-)
r-r1 L - - ( ) (A.2-5)

ino

By substitution fran (A.2-5) into (A.2-3) we will get

r

,(t + ). ( )(t[u i)(t) .u (t:,) + O(£ )

imo
(A.2-6)

If r>O

u(W (t ui) (t8 ) ± - 0,.,...,r-l (A.2-7)
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So, (A.2-6) turns out to be

(t 5 *6)=!- (ts- u ]  0 (A.-8)

let

,=-sgn T (t + F) (A.2-9)

Un(t) O1(t) (A.2-10)

and

s-0

.u(i)ct " W(i(t) i ,.,...,r

(A.2-12)

On the singular arc, the left side can be expended as

r

aK(ts - F) -U(t 5 -e) = E -ai~ U

i-O

(A.2-13)

By using (A.2-7) and (A.2-12) the right hand side of (A.2-13) can

be simplified to

FE (r)(r
oCt-) U(t5  r! [u (t) a ul r)(t5) + O(e)f
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We substitute from (A.2-13) into (A.2-6) and having K = 2q + r we

got

":- • ~((t e + )=Pi r  i(t )E (t s - e) - U(ts - 0)1 + oW K

- (A.2-15)

From the application of minimum principle on the non-singular

subarc a= i if q)(t 4)<O and a=-i if 9(t s +) > 0.

Therefore we have

(-l)r, (ts[K(ts -) +u(t s - e)] < 0 (A.2-16)

and from GIC condition we have

(-l)qp(t s > 0 (A.2-17)

Multiplying (A.2-16) by (A.2-17) we get

( 1 )q+r2Ql2(s)[K(t 5 - E) +u(t 5 - e)J < 0 (A.2-18)

Since lu~t)i jK(t) for all t e (tQ~f and the singular arc is
-St

asmmed to be interior almost everywhere, the bracketed quantity

(A.2-18) regardless of + signs is positive, also s 2 (tS) > 0.

Therefore

(-)q+r <0 (A.2-19)

which Implies q+r is odd.
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APPENDIXl B

B.1 Linear Case

Assume t to be a nanina]. switching time,, we try to find

due to the choice of t .For this pirpose we calculate

AX(t)

Ax ~ ~xt 0)

ff 0

X~ j Nt.-~ (B -5

+ + [I1(t5) - [}[At 5  (B.1-)

1S1

where

I.i

.~~ s. 1(..'t0



. . .... . . . . . . .

Since x(t O) is fixed -x(t O) - O, and to find Ax(t 0), the

2a X 2n matrices , TV, 0, , F are partitioned to n x n matrices

as the following.

r u 13.1-3) we can obtain

-- t)- Nx(t8) (B l-7)

=1 
93.1t B18)

D 3.1r D 12 and 1 E n12rx.Sw cnh

.~r:m ( f3.1-8) and (3.1-17) a .(t o ) obtaineas

(t o  1 t (B.-)

where

22- £1 x(to) + bjt.(t o) + f 1Z(to) -o

(B .1-10)

Since the inverse in (B.1-10) always exists, we will have

12

/i . . . . , i . -, - - . , , ' . . . . ,> , -- .. " , - --: , . - - - .F -' -. - . . - -. - i , " 2 - " ; ,: F F .i . - . _ - , .1 2 8. . - , -;



p-
° .,., .: xC t ) Ate (B.1-31)

~f

ftere

iyXF' J 2 )z(tO) + (3'y2+ xJ2)(tO)

+ F (t ) + ±) 712M] (B.1-13)

,- ".a

M. [922F + (T23. . + T .)1(to )  + (MF2 YB hK(t o )

+1 t) t). +)t0

"4W - ( SE)t t. (B.1-15)

a

So, when At approaches zero we wil have

- t to

By having TEF and for each mitch ng time t1  we can

use Nefton's method to find t aat which D1TEF - o, Ax(tf) and

.A(tf can be expressed In terms of Ato to the second order in which

case by iterative methods we can get the optimal t5  where
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~.-j~~f -0 but it lii be tedious.

B.2 Non-Linear Case

In this section we are trying to find an expression for

The solution to (3.2-12) and (3.2-13) is

5x5xt)

V., a ,to)] (B.2-1). L5.(t-). 5%.(to
?0

where

,I(t8,t)] - [ j [ 4 a (tt) (B.2-2)

#(to) I I (B.2-3)

and the solution to (3.2-1) and (3.2-15) is

.r ( ,,t3)] ~xtj(3.2.A)
bX(tf) b[ t-*

where

-.' [,(tf) .,t) (B.2-5)
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_ Yt r,t f) I (B.2-6)

In order to express 5z(tf) and 5%(tf) we el]miante Ax(ts)

between (3.2-8) and (3.2-10) and AX(t 5 ) between (3.2-9) and (3.2-3l)

we gt

bx(t, -;(t;) + " +(2

At + (B.2-7)

adFrcm (B.2-) ad (.2-) we bavii

5z(t+) l (t) + (t+) 0'+ [ t ' °

e't-) (B.2-8)
and :from (B.2-8) an (B.2-4) we obtLd

:.~B~ f(). [BX, ) (. )owhere.

[i(t; + t

o (t,) [(t t,)J L ato)) (B.2-13)
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By linearizing (3.1-3) arond a ninal trajectory we vill get

_.~A C8n-) (B.2-12). (
sxIt-; 1

,L aJ -(U)

U x U

From (B.2-1) and (B.2-12) we obtain

[~ 0  T E(t At~ (B.2-13)• bx(to)

where

.; 0

LU

(H (H)

((t)) = [to(m). (B.2-15)

U

From (B.2-13) and (B.2-9) we have

Bzt

O ( (.t-) + e(ts)'Y(ts)]At3 - t3 )At5  (B.2-16)

FrOM (3.2-18)

132



7,7 7% -(t .Z

AT'- (f) - 6 x(t r) + H.O.T. (B.2-17)

.-.
Nc~ psrtiionr~g1 1 ()a where p.1 (t.) and (t)are

AT ,-" At 1(t) Ats + o(At,) 2(32-8)

"ATE' i h I

=to itI IL(te) I ~(t) (B.2-19)

' 
t

Therefore, similar to the linear case we can find an iterative rela-

tionship for the switching time.

"g,.

_-J

.4

.4 4

.4
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APPIXl C

.n this appendix first we express TEp as a function of x (t 0 )

-. and t For this purpose we find the final states and costates of

the system from (3.1-8) and (3.1-12) as

. I~tf) Z(to0

1  f)J %(t1)L~if

.2 where e(ts) is defined in Appendix B and

"~~ ~~~ ( tttsi))(c

"and Y2 are nx l vectors as a function of ti -

By definition

h 1 16  - SI(tf)] T%'(tf) si(tf] (C3)
_%':i E(t) - s - (c. )

Fra (C.1) we have

x(t f) ellz~(tO) 912e (t0 ) + V1 (cli

,X(tf) e N) + e2 .(to) 2 2 (c.5)

and from (C2) - (C. 5) we wi obtain
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.77

where

.(t ).= E(e - se.1)x(t) + (V - S)]T(e . se)

(C.7)

- *) e - se)T(e - sea)] (c.8)

( - (e - s22)x(t) ( 2  - s-l r.

(82 -S81)XtO + -B1 "21 Sel)x(tO)

+ N - SI')] (c.9)

Since Condition (3.1-3) is linear in sates and costates it can be

expressed as

(v(ts)] L L. 1 0 (C.0)

where V(s) is an m x 2a matrix is a function of system parameters.

From (c.1o) and (3.1-18) we will obtain

F~0
[(t)] L T(t )1 (C.11)

.(t 0 )

where

[(t E)(v(t )(tit,)J (C.12)

W2(t8 )
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and

W1 and W 2 are mx n matrices and T is an m, vector. SO,

we will. have

i) i
w (t (to) T~t 1 *t)z(t)

Now (C.6) can be minimiized with respect to ,x(t0 ) subject to

(C.i14) at any t .

aa

(C.4i) and (C.5) with respect tot

X~ e22 X ~ i (t 0 ) + V2
x~t) 1. x~ 0 ) + e2 2 6 t -

at each switching time t~ % (to).~i~ and miii l(t) 8 r
a %(to)

obtained so [* mi h(t )J can be conpiited,, then by a Newton

iterative relationship the optimal switching time is reached.
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